ترغب بنشر مسار تعليمي؟ اضغط هنا

Peculiar Broad Absorption Line Quasars found in DPOSS

97   0   0.0 ( 0 )
 نشر من قبل Robert J. Brunner
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Robert J. Brunner




اسأل ChatGPT حول البحث

With the recent release of large (i.e., > hundred million objects), well-calibrated photometric surveys, such as DPOSS, 2MASS, and SDSS, spectroscopic identification of important targets is no longer a simple issue. In order to enhance the returns from a spectroscopic survey, candidate sources are often preferentially selected to be of interest, such as brown dwarfs or high redshift quasars. This approach, while useful for targeted projects, risks missing new or unusual species. We have, as a result, taken the alternative path of spectroscopically identifying interesting sources with the sole criterion being that they are in low density areas of the g - r and r - i color-space defined by the DPOSS survey. In this paper, we present three peculiar broad absorption line quasars that were discovered during this spectroscopic survey, demonstrating the efficacy of this approach. PSS J0052+2405 is an Iron LoBAL quasar at a redshift z = 2.4512 with very broad absorption from many species. PSS J0141+3334 is a reddened LoBAL quasar at z = 3.005 with no obvious emission lines. PSS J1537+1227 is a Iron LoBAL at a redshift of z = 1.212 with strong narrow Mgii and Feii emission. Follow-up high resolution spectroscopy of these three quasars promises to improve our understanding of BAL quasars. The sensitivity of particular parameter spaces, in this case a two-color space, to the redshift of these three sources is dramatic, raising questions about traditional techniques of defining quasar populations for statistical analysis.



قيم البحث

اقرأ أيضاً

We report spectropolarimetry of 30 radio-selected broad absorption line (BAL) quasars with the Keck Observatory, 25 from the sample of Becker et al. (2000). Both high and low-ionization BAL quasars are represented, with redshifts ranging from 0.5 to 2.5. The spectropolarimetric properties of radio-selected BAL quasars are very similar to those of radio-quiet BAL quasars: a sizeable fraction (20%) show large continuum polarization (2-10%) usually rising toward short wavelengths, emission lines are typically less polarized than the continuum, and absorption line troughs often show large polarization jumps. There are no significant correlations between polarization properties and radio properties, including those indicative of system orientation, suggesting that BAL quasars are not simply normal quasars seen from an edge-on perspective.
It has been argued that certain broad absorption line quasars are viewed within 35 degrees of the axis of a relativistic radio jet, based on two-epoch radio flux density variability. It is true if the surface brightness of a radio source is observed to change by a sufficiently large amount, the inferred brightness temperature will exceed 10^12 K and Doppler beaming in our direction must be invoked to avoid a Compton cooling catastrophe. However, flux density changes cannot be linked to surface brightness changes without knowledge of the size of the source. If an optically thick source changes in projected area but not surface brightness, its brightness temperature is constant and its flux variability yields no constraint on its orientation. Moreover, as pointed out by Rees, spherical expansion of an emission source at relativistic speeds yields an apparently superluminal increase in its projected area, which can explain short-timescale flux density variability without requiring a relativistic jet oriented near to our line of sight. Therefore, two-epoch radio flux density variability by itself cannot unambiguously identify sources with jets directed towards us. Only VLBI imaging can robustly determine the fraction of broad absorption line quasars which are polar.
137 - Christian Knigge 2008
We carefully reconsider the problem of classifying broad absorption line quasars (BALQSOs) and derive a new, unbiased estimate of the intrinsic BALQSO fraction from the SDSS DR3 QSO catalogue. We first show that the distribution of objects selected b y the so-called ``absorption index (AI) is clearly bimodal in log(AI), with only one mode corresponding to definite BALQSOs. The surprisingly high BALQSO fractions that have recently been inferred from AI-based samples are therefore likely to be overestimated. We then present two new approaches to the classification problem that are designed to be more robust than the AI, but also more complete than the traditional ``balnicity index (BI). Both approaches yield observed BALQSO fractions around 13.5 per cent, while a conservative third approach suggests an upper limit of 18.3 per cent. Finally, we discuss the selection biases that affect our observed BALQSO fraction. After correcting for these biases, we arrive at our final estimate of the intrinsic BALQSO fraction. This is f_BALQSO = 0.17 +/- 0.01 (stat) +/- 0.03 (sys), with an upper limit of f_BALQSO = 0.23. We conclude by pointing out that the bimodality of the log(AI) distribution may be evidence that the BAL-forming region has clearly delineated physical boundaries.
We present a new set of 84 Broad absorption line (BAL) quasars ( 1.7 $<$ zem $<$ 4.4) exhibiting an appearance of civ BAL troughs over 0.3$-$4.8 rest-frame years by comparing the Sloan Digital Sky Survey Data Release (SDSSDR)-7, SDSSDR-12, and SDSSDR -14 quasar catalogs. We contrast the nature of BAL variability in this appearing BAL quasar sample with a disappearing BAL quasar sample studied in literature by comparing the quasars intrinsic, BAL trough, and continuum parameters between the two samples. We find that appearing BAL quasars have relatively higher redshift and smaller probed timescales as compared to the disappearing BAL quasars. To mitigate the effect of any redshift bias, we created control samples of appearing and disappearing BAL quasars that have similar redshift distribution. We find that the appearing BAL quasars are relatively brighter and have shallower and wider BAL troughs compared to the disappearing BAL sample. The distribution of quasar continuum variability parameters between the two samples is clearly separated, with the appearance of the BAL troughs being accompanied by the dimming of the continuum and vice versa. Spectral index variations in the two samples also point to the anti-correlation between the BAL trough and continuum variations consistent with the bluer when brighter trend in quasars. We show that the intrinsic dust model is less likely to be a favorable scenario in explaining BAL appearance/disappearance. Our analysis suggests that the extreme variations of BAL troughs like BAL appearance/disappearance are mainly driven by changes in the ionization conditions of the absorbing gas.
Our recently reported lack of Intra-Night Optical Variability (INOV) among Broad-Absorption-Line (BAL) quasars exhibiting some blazar-like radio properties, either questions polar ejection of BAL clouds, and/or hints at a physical state of the relati vistic jet modified due to interaction with the thermal BAL wind on the innermost sub-parsec scale. As a robust check on this unexpected finding for the BAL_blazar candidates, we report here the INOV study of a new and much more rigorously defined comparison sample consisting of 9 normal (non-BAL) blazars, matched in both magnitude and redshift to the aforementioned sample of BAL_blazar candidates. The present campaign spanning 27 sessions yields an INOV duty cycle of ~23% for the comparison sample of normal blazars, employing the enhanced F-test. However, even this more sensitive test does not detect INOV for the sample of BAL_blazar candidates. This stark INOV contrast found here between the BAL_blazar candidates and normal blazars can probably be traced to a physical interaction of the relativistic jet with the thermal wind, within sub-parsec range from the nucleus. The consequent enfeebling of the jet would additionally explain the striking deficiency among BAL quasars of powerful FR II radio lobes on the much larger scale of 10-100 kpc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا