ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of a quiescent neutron star binary in the globular cluster M13

165   0   0.0 ( 0 )
 نشر من قبل Bruce Gendre
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have discovered with XMM-Newton an X-ray source in the core of the globular cluster M13, whose X-ray spectral properties suggest that it is a quiescent neutron star X-ray binary. The spectrum can be well fitted with a pure hydrogen atmosphere model, with T=76 +/- 3 eV, R=12.8 +/- 0.4 km and an X-ray luminosity of 7.3 +/- 0.6 x 10^{32} erg/s. In the light of this result, we have discovered a strong correlation between the stellar encounter rate and the number of quiescent neutron stars found in the ten globular clusters observed so far by either XMM-Newton or Chandra. This result lends strong support to the idea that these systems are primarily produced by stellar encounters in the core of globular clusters.


قيم البحث

اقرأ أيضاً

X-ray spectra of quiescent low-mass X-ray binaries containing neutron stars can be fit with atmosphere models to constrain the mass and the radius. Mass-radius constraints can be used to place limits on the equation of state of dense matter. We perfo rm fits to the X-ray spectrum of a quiescent neutron star in the globular cluster M13, utilizing data from ROSAT, Chandra and XMM-Newton, and constrain the mass-radius relation. Assuming an atmosphere composed of hydrogen and a 1.4${rm M}_{odot}$ neutron star, we find the radius to be $R_{rm NS}=12.2^{+1.5}_{-1.1}$ km, a significant improvement in precision over previous measurements. Incorporating an uncertainty on the distance to M13 relaxes the radius constraints slightly and we find $R_{rm NS}=12.3^{+1.9}_{-1.7}$ km (for a 1.4${rm M}_{odot}$ neutron star with a hydrogen atmosphere), which is still an improvement in precision over previous measurements, some of which do not consider distance uncertainty. We also discuss how the composition of the atmosphere affects the derived radius, finding that a helium atmosphere implies a significantly larger radius.
Using deep Chandra observations of the globular cluster M28, we study the quiescent X-ray emission of a neutron star in a low-mass X-ray binary in order to constrain the chemical composition of the neutron star atmosphere and the equation of state of dense matter. We fit the spectrum with different neutron star atmosphere models composed of hydrogen, helium or carbon. The parameter values obtained with the carbon model are unphysical and such a model can be ruled out. Hydrogen and helium models give realistic parameter values for a neutron star, and the derived mass and radius are clearly distinct depending on the composition of the atmosphere. The hydrogen model gives masses/radii consistent with the canonical values of 1.4 Msun and 10 km, and would allow for the presence of exotic matter inside neutron stars. On the other hand, the helium model provides solutions with higher masses/radii, consistent with the stiffest equations of state. Measurements of neutron star masses/radii by spectral fitting should consider the possibility of heavier element atmospheres, which produce larger masses/radii for the same data, unless the composition of the accretor is known independently.
This paper reports the search for quiescent low-mass X-ray binaries (qLMXBs) in the globular cluster (GC) NGC 6553 using an XMM-Newton observation designed specifically for that purpose. We spectrally identify one candidate qLMXB in the core of the c luster, based on the consistency of the spectrum with a neutron star H-atmosphere model at the distance of NGC 6553. Specifically, the best-fit radius found using the three XMM European Photon Imaging Camera spectra is R_NS=6.3(+2.3)(-0.8) km (for M_NS=1.4 Msun) and the best-fit temperature is kTeff=136 (+21)(-34) eV. Both physical parameters are in accordance with typical values of previously identified qLMXBs in GC and in the field, i.e., R_NS~5-20 km and kTeff~50-150 eV. A power-law (PL) component with a photon index Gamma=2.1(+0.5)(-0.8) is also required for the spectral fit and contributes to ~33% of the total flux of the X-ray source. A detailed analysis supports the hypothesis that the PL component originates from nearby sources in the core, unresolved with XMM. The analysis of an archived Chandra observation provides marginal additional support to the stated hypothesis. Finally, a catalog of all the sources detected within the XMM field of view is presented here.
We report on the discovery of the companion star to the millisecond pulsar J1631+3627F in the globular cluster M13. By means of a combination of optical and near-UV high-resolution observations obtained with the Hubble Space Telescope, we identified the counterpart at the radio source position. Its location in the color-magnitude diagrams reveals that the companion star is a faint (V sim 24.3) He-core white dwarf. We compared the observed companion magnitudes with those predicted by state-of-the-art binary evolution models and found out that it has a mass of 0.23 pm 0.03 Msun, a radius of 0.033^+0.004_-0.005 Rsun and a surface temperature of 11500^+1900_-1300 K. Combining the companion mass with the pulsar mass function is not enough to determine the orbital inclination and the neutron star mass; however, the last two quantities become correlated: we found that either the system is observed at a low inclination angle, or the neutron star is massive. In fact, assuming that binaries are randomly aligned with respect to the observer line of sight, there is a sim 70% of probability that this system hosts a neutron star more massive than 1.6 Msun. In fact, the maximum and median mass of the neutron star, corresponding to orbital inclination angles of 90 deg and 60 deg, are M_NS,max = 3.1 pm 0.6 Msun and M_NS,med = 2.4 pm 0.5 Msun, respectively. On the other hand, assuming also an empirical neutron star mass probability distribution, we found that this system could host a neutron star with a mass of 1.5 pm 0.1 Msun if orbiting with a low-inclination angle around 40 deg.
We have analyzed FUSE, COS, GHRS, and Keck HIRES spectra of the UV-bright star Barnard 29 in M13 (NGC 6205). By comparing the photospheric abundances derived from multiple ionization states of C, N, O, Si, and S, we infer an effective temperature T_e ff = 21,400 +/- 400 K. Balmer-line fits yield a surface gravity log g = 3.10 +/- 0.03. We derive photospheric abundances of He, C, N, O, Mg, Al, Si, P, S, Cl, Ar, Ti, Cr, Fe, Ni, and Ge. Barnard 29 exhibits an abundance pattern typical of the first-generation stars in M13, enhanced in oxygen and depleted in aluminum. An underabundance of C and an overabundance of N suggest that the star experienced nonconvective mixing on the RGB. We see no evidence of significant chemical evolution since the star left the RGB; in particular, it did not undergo third dredge-up. Previous workers found that the stars FUV spectra yield an iron abundance about 0.5 dex lower than its optical spectrum, but the iron abundances derived from all of our spectra are consistent with the cluster value. We attribute this difference to our use of model atmospheres without microturbulence, which is ruled out by careful fits to optical absorption features. We derive a mass M_*/M_sun = 0.45 - 0.55 and luminosity log (L_*/L_sun) = 3.26 - 3.35. Comparison with stellar-evolution models suggests that Barnard 29 evolved from a ZAHB star of mass M_*/M_sun between 0.50 and 0.55, near the boundary between the extreme and blue horizontal branches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا