ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital dynamics of three-dimensional bars: IV. Boxy isophotes in face-on views

40   0   0.0 ( 0 )
 نشر من قبل Skokos Charalampos
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the conditions that favour boxiness of isodensities in the face-on views of orbital 3D models for barred galaxies. Using orbital weighted profiles we show that boxiness is in general a composite effect that appears when one considers stable orbits belonging to several families of periodic orbits. 3D orbits that are introduced due to vertical instabilities, play a crucial role in the face-on profiles and enhance their rectangularity. This happens because at the 4:1 radial resonance region we have several orbits with boxy face-on projections, instead of few rectangular-like x1 orbits, which, in a fair fraction of the models studied so far, are unstable at this region. Massive bars are characterized by rectangular-like orbits. However, we find that it is the pattern speed that affects most the elongation of the boxy feature, in the sense that fast bars are more elongated than slow ones. Boxiness in intermediate distances between the center of the model and the end of the bar can be attributed to x1v1 orbits, or to a combination of families related to the radial 3:1 resonance.


قيم البحث

اقرأ أيضاً

98 - Martinez-Valpuesta , I. 2008
Boxy/peanut bulges in disc galaxies have been associated to stellar bars. We analyse their properties in a large sample of $N$-body simulations, using different methods to measure their strength, shape and possible asymmetry, and then inter-compare t he results. Some of these methods can be applied to both simulations and observations. In particular, we seek correlations between bar and peanut properties, which, when applied to real galaxies, will give information on bars in edge-on galaxies, and on peanuts in face-on galaxies.
We present the first statistical study on the intrinsic three-dimensional (3D) shape of a sample of 83 galactic bars extracted from the CALIFA survey. We use the galaXYZ code to derive the bar intrinsic shape with a statistical approach. The method u ses only the geometric information (ellipticities and position angles) of bars and discs obtained from a multi-component photometric decomposition of the galaxy surface-brightness distributions. We find that bars are predominantly prolate-triaxial ellipsoids (68%), with a small fraction of oblate-triaxial ellipsoids (32%). The typical flattening (intrinsic C/A semiaxis ratio) of the bars in our sample is 0.34, which matches well the typical intrinsic flattening of stellar discs at these galaxy masses. We demonstrate that, for prolate-triaxial bars, the intrinsic shape of bars depends on the galaxy Hubble type and stellar mass (bars in massive S0 galaxies are thicker and more circular than those in less massive spirals). The bar intrinsic shape correlates with bulge, disc, and bar parameters. In particular with the bulge-to-total (B/T) luminosity ratio, disc g-r color, and central surface brightness of the bar, confirming the tight link between bars and their host galaxies. Combining the probability distributions of the intrinsic shape of bulges and bars in our sample we show that 52% (16%) of bulges are thicker (flatter) than the surrounding bar at 1$sigma$ level. We suggest that these percentages might be representative of the fraction of classical and disc-like bulges in our sample, respectively.
We investigate regular and chaotic two-dimensional (2D) and three-dimensional (3D) orbits of stars in models of a galactic potential consisting in a disk, a halo and a bar, to find the origin of boxy components, which are part of the bar or (almost) the bar itself. Our models originate in snapshots of an N-body simulation, which develops a strong bar. We consider three snapshots of the simulation and for the orbital study we treat each snapshot independently, as an autonomous Hamiltonian system. The calculated corotation-to-bar-length ratios indicate that in all three cases the bar rotates slowly, while the orientation of the orbits of the main family of periodic orbits changes along its characteristic. We characterize the orbits as regular, sticky, or chaotic after integrating them for a 10 Gyr period by using the GALI$_2$ index. Boxiness in the equatorial plane is associated either with quasi-periodic orbits in the outer parts of stability islands, or with sticky orbits around them, which can be found in a large range of energies. We indicate the location of such orbits in diagrams, which include the characteristic of the main family. They are always found about the transition region from order to chaos. By perturbing such orbits in the vertical direction we find a class of 3D non-periodic orbits, which have boxy projections both in their face-on and side-on views.
Over half of disk galaxies are barred, yet the mechanisms for bar formation and the life-time of bar buckling remain poorly understood. In simulations, a thin bar undergoes a rapid (<1 Gyr) event called buckling, during which the inner part of the ba r is asymmetrically bent out of the galaxy plane and eventually thickens, developing a peanut/X-shaped profile when viewed side-on. Through analyzing stellar kinematics of N-body model snapshots of a galaxy before, during, and after the buckling phase, we confirm a distinct quadrupolar pattern of out-of-plane stellar velocities in nearly face-on galaxies. This kinematic signature of buckling allows us to identify five candidates of currently buckling bars among 434 barred galaxies in the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) Survey, an integral field unit (IFU) spectroscopic survey that measures the composition and kinematic structure of nearby galaxies. The frequency of buckling events detected is consistent with the 0.5-1 Gyr timescale predicted by simulations. The five candidates we present more than double the total number of candidate buckling bars, and are the only ones found using the kinematic signature.
Along with a brief analysis we present data obtained from BVRI and Ks images of a sample of 19 galaxies (18 barred and 1 unbarred) which will be further explored in a future paper. We measured the lengths and colors of the bars, created color maps an d estimated global color gradients. Applying a method developed in a companion paper, we could distinguish for 7 galaxies in our sample those whose bars have been recently formed from the ones with already evolved bars. We estimated an average difference in the optical colors between young and evolved bars that may be translated to an age difference of the order of 10 Gyr, meaning that bars may be, at least in some cases, long standing structures. Moreover, our results show that, on average, evolved bars are longer than young bars. This seems to indicate that, during its evolution, a bar grows longer by capturing stars from the disk, in agreement with recent numerical and analytical results. Although the statistical significance of these results is low, and further studies are needed to confirm them, we discuss the implications from our results on the possibility of bars being a recurrent phenomenon. We also present isophotal contours for all our images as well as radial profiles of relevant photometric and geometric parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا