ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematics, turbulence and evolution of planetary nebulae

104   0   0.0 ( 0 )
 نشر من قبل Krzysztof Gesicki
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper discusses the location of a sample of planetary nebulae on the HR diagram. We determine the internal velocity fields of 14 planetary nebulae from high-resolution echelle spectroscopy, with the help of photoionization models. The mass averaged velocity is shown to be a robust, simple parameter describing the outflow. The expansion velocity and radius are used to define the dynamical age; together with the stellar temperature, this gives a measurement of the luminosity and core mass of the central star. The same technique is applied to other planetary nebulae with previously measured expansion velocities, giving a total sample of 73 objects. The objects cluster closely around the Schoenberner track of 0.61 M_sun, with a very narrow distribution of core masses. The masses are higher than found for local white dwarfs. The luminosities determined in this way tend to be higher by a factor of a few than those derived from the nebular luminosities. The discrepancy is highest for the hottest (most evolved) stars. We suggest photon leakage as the likely cause. The innermost regions of the non-[WC] nebulae tend to show strong acceleration. Together with the acceleration at the ionization front, the velocity field becomes U-shaped. The presence of strong turbulent motions in [WC] nebulae is confirmed. Except for this, we find that the [WC] stars evolve on the same tracks as non-[WC] stars.

قيم البحث

اقرأ أيضاً

We report the results of a radial velocity survey of planetary nebulae (PNe) located in the tidal features of the well-known interacting system NGC 5194/95 (M51). We find clear kinematic evidence that M51s northwestern tidal debris consists of two di screte structures which overlap in projection -- NGC 5195s own tidal tail, and diffuse material stripped from NGC 5194. We compare these kinematic data to a new numerical simulation of the M51 system, and show that the data are consistent with the classic ``single passage model for the encounter, with a parabolic satellite trajectory and a 2:1 mass ratio. We also comment on the spectra of two unusual objects: a high-velocity PN which may be associated with NGC 5194s halo, and a possible interloping high-redshift galaxy.
Using an [OIII]5007 on-band/off-band filter technique, we identify 109 planetary nebulae (PNe) candidates in M 82, using the FOCAS instrument at the 8.2m Subaru Telescope. The use of ancillary high-resolution HST ACS H-alpha imaging aided in discrimi nating PNe from contaminants such as supernova remnants and compact HII regions. Once identified, these PNe reveal a great deal about the host galaxy; our analysis covers kinematics, stellar distribution, and distance determination. Radial velocities were determined for 94 of these PNe using a method of slitless spectroscopy, from which we obtain a clear picture of the galaxys rotation. Overall, our results agree with those derived by CO(2-1) and HI measurements that show a falling, near-Keplerian rotation curve. However, we find a subset of our PNe that appear to lie far above the plane (~1 kpc), yet these objects appear to be rotating as fast as objects close to the plane. These objects will require further study to determine if they are members of a halo population, or if they can be interpreted as a manifestation of a thickened disk as a consequence of a past interaction with M 81. In addition, [OIII]5007 emission line photometry of the PNe allows the construction of a planetary nebula luminosity function (PNLF). Our PNLF distance determination for M 82 yields a larger distance than those derived using the TRGB, using Cepheid variable stars in nearby group member M 81, or using the PNLF of M 81. We show that this inconsistency most likely stems from our inability to completely correct for internal extinction imparted by this dusty, starburst galaxy. (Abridged)
Context: In recent years mid- and far infrared spectra of planetary nebulae have been analysed and lead to more accurate abundances. It may be expected that these better abundances lead to a better understanding of the evolution of these objects. Aim s: The observed abundances in planetary nebulae are compared to those predicted by the models of Karakas (2003) in order to predict the progenitor masses of the various PNe used. The morphology of the PNe is included in the comparison. Since the central stars play an important role in the evolution, it is expected that this comparison will yield additional information about them. Methods: First the nitrogen/oxygen ratio is discussed with relation to the helium/hydrogen ratio. The progenitor mass for each PNe can be found by a comparison with the models of Karakas. Then the present luminosity of the central stars is determined in two ways: first by computing the central star effective temperature and radius, and second by computing the nebular luminosity from the hydrogen and helium lines. This luminosity is also a function of the initial mass so that these two values of initial mass can be compared. Results: Six of the seven bipolar nebulae can be identified as descendants of high mass stars (4Msun - 6Msun) while the seventh is ambiguous. Most of the elliptical PNe have central stars which descend from low initial mass stars, although there are a few caveats which are discussed. There is no observational evidence for a higher mass for central stars which have a high carbon/oxygen ratio. The evidence provided by the abundance comparison with the models of Karakas is consistent with the HR diagram to which it is compared. In the course of this discussion it is shown how `optically thin nebulae can be separated from those which are optically thick.
101 - John Feldmeier 2001
The galaxy pair NGC 5194/95 (M 51) is one of the closest and best known interacting systems. Despite its notoriety, however, many of its features are not well studied. Extending westward from NGC 5195 is a low surface brightness tidal tail, which can only be seen in deep broadband exposures. Our previous [O III] lambda 5007 planetary nebulae (PN) survey of M 51 recovered this tidal tail, and presented us with a opportunity to study the kinematics of a galaxy interaction in progress. We report the results of a spectroscopy survey of the PN, aimed at determining their kinematic properties. We then use these data to constrain new self-consistent numerical models of the system.
We study the line widths in the [ion{O}{3}]$lambda$5007 and H$alpha$ lines for two groups of planetary nebulae in the Milky Way bulge based upon spectroscopy obtained at the Observatorio Astronomico Nacional in the Sierra San Pedro Martir (OAN-SPM) u sing the Manchester Echelle Spectrograph. The first sample includes objects early in their evolution, having high H$beta$ luminosities, but [ion{O}{3}]$lambda 5007/mathrm Hbeta < 3$. The second sample comprises objects late in their evolution, with ion{He}{2} $lambda 4686/mathrm Hbeta > 0.5$. These planetary nebulae represent evolutionary phases preceeding and following those of the objects studied by Richer et al. (2008). Our sample of planetary nebulae with weak [ion{O}{3}]$lambda$5007 has a line width distribution similar to that of the expansion velocities of the envelopes of AGB stars, and shifted to systematically lower values as compared to the less evolved objects studied by Richer et al. (2008). The sample with strong ion{He}{2} $lambda 4686$ has a line width distribution indistinguishable from that of the more evolved objects from Richer et al. (2008), but a distribution in angular size that is systematically larger and so they are clearly more evolved. These data and those of Richer et al. (2008) form a homogeneous sample from a single Galactic population of planetary nebulae, from the earliest evolutionary stages until the cessation of nuclear burning in the central star. They confirm the long-standing predictions of hydrodynamical models of planetary nebulae, where the kinematics of the nebular shell are driven by the evolution of the central star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا