ترغب بنشر مسار تعليمي؟ اضغط هنا

The initial Helium content of Galactic Globular Cluster stars from the R-parameter: comparison with the CMB constraint

51   0   0.0 ( 0 )
 نشر من قبل Cassisi Santi
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Cassisi




اسأل ChatGPT حول البحث

Recent precise determinations of the primordial He-abundance (Y_p) from cosmic microwave background (CMB) analyses and cosmological nucleosynthesis computations, provide Y_p=0.248$pm$0.001. On the other hand, recent works on the initial He-abundance of Galactic globular cluster (GGC) stars, making use of the R parameter as He-indicator, have consistently obtained $Y_{GGC}sim$0.20. In light of this serious discrepancy that casts doubt on the adequacy of low mass He-burning stellar models, we have rederived the initial He-abundance for stars in two large samples of GGCs, by employing theoretical models computed using new and more accurate determinations of the Equation of State for the stellar matter, and of the uncertain $^{12}$C$(alpha,gamma)^{16}$O reaction rate. Our models include semiconvection during the central convective He-burning phase, while the breathing pulses are suppressed, in agreement with the observational constraints coming from the measurements of the R_2 parameter in a sample of clusters. By taking into account the observational errors on the individual R-parameter values, as well as uncertainties in the GGC [Fe/H] scale, treatment of convection and $^{12}$C$(alpha,gamma)^{16}$O reaction rate, we have obtained, respectively, a mean $Y_{GGC}$=0.243$pm$0.006 and $Y_{GGC}$=0.244$pm$0.006 for the two studied GGC samples. These estimates are now fully consistent with Y_p obtained from CMB studies. Moreover, the trend of the individual He-abundances with respect to [Fe/H] is consistent with no appreciable He-enrichment along the GGC metallicity range.



قيم البحث

اقرأ أيضاً

54 - M. Salaris 2004
We estimate the initial He content in about 30% of the Galactic globular clusters (GGCs) from new star counts we have performed on the recently published HST snapshot database of Colour Magnitude Diagrams (Piotto et al. 2002). More in detail, we use the so-called $R$-parameter and estimate the He content from a calibration based on a recently updated set of stellar models. We performed an accurate statistical analysis in order to assess whether GGCs show a statistically significant spread in their initial He abundances, and whether there is a correlation with the metallicity. We do not find any significant dependence of the He abundance on the GC metallicity; this provides an important constraint for models of Galaxy formation and evolution. Apart from GGCs with the bluest HB morphology, the observed spread in the individual He abundances is statistically compatible with the individual errors. This means that either there is no intrinsic He spread among the GGCs, or that this is masked by the errors. In the latter case we have estimated a firm 1$sigma$ upper limit of 0.019 to the possible intrinsic spread. In case of the GGCs with the bluest HB morphology we detect a significant spread towards higher abundances inconsistent with the individual errors. In the hypothesis that the intrinsic dispersion on the individual He abundances is zero, taking into account the errors on the individual R-parameter estimates, as well as the uncertainties on the GGC [M/H] scale and theoretical calibration, we have determined an initial He abundance Y(GGC)=0.250pm0.006 a value in perfect agreement with current estimates based on CMB radiation analyses and cosmological nucleosynthesis computations.
Multiple populations in globular clusters are usually explained by the formation of stars out of material with a chemical composition that is polluted to different degrees by the ejecta of short-lived, massive stars of various type. Among other thing s, these polluters differ by the amount of helium they spread in the surrounding medium. In this study we investigate whether the present-day photometric method used to infer the helium content of multiple populations indeed gives the true value or underestimates it by missing very He-rich, but rare stars. We focus on the specific case of NGC6752. We compute atmosphere models and synthetic spectra along isochrones produced for this cluster for a very broad range of He abundances covering the predictions of different pollution scenarios, including the extreme case of the fast-rotating massive star (FRMS) scenario. We calculate synthetic photometry in HST filters best suited to study the helium content. We subsequently build synthetic clusters with various distributions of stars. We finally determine the maximum helium mass fraction of these synthetic clusters using a method similar to that applied to observational data. We build toy models of clusters with various distributions of multiple populations and ensure that we are able to recover the input maximum Y. We then build synthetic clusters with the populations predicted by the FRMS scenario and find that while we slightly underestimate the maximum Y value, we are still able to detect stars much more He-rich than the current observed maximum Y. It is easier to determine the maximum Y on main sequence stars than on red giant branch stars, but qualitatively the results are unaffected by the sample choice. We show that in NGC6752 it is unlikely that stars more He-rich than the current observational limit of about 0.3 are present.
He has been proposed as a key element to interpret the observed multiple MS, SGB, and RGB, as well as the complex horizontal branch (HB) morphology. Stars belonging to the bluer part of the HB, are thought to be more He rich (Delta Y=0.03 or more) an d more Na-rich/O-poor than those located in the redder part. This hypothesis was only partially confirmed in NGC 6752, where stars of the redder zero-age HB showed a He content of Y=0.25+-0.01, fully compatible with the primordial He content of the Universe, and were all Na-poor/O-rich. Here we study hot blue HB (BHB) stars in the GC NGC 6121 (M4) to measure their He plus O/Na content. We observed 6 BHB stars using the UVES@VLT2 spectroscopic facility. In addition to He, O, Na, and Fe abundances were estimated. Stars turned out to be all Na-rich and O-poor and to have a homogeneous enhanced He content with a mean value of Y=0.29+-0.01(random)+-0.01(systematic). The high He content of blue HB stars in M4 is also confirmed by the fact that they are brighter than red HB stars (RHB). Theoretical models suggest the BHB stars are He-enhanced by Delta Y=0.02-0.03 with respect to the RHB stars. The whole sample of stars has a metallicity of [Fe/H]=-1.06+-0.02 (internal error). This is a rare direct measurement of the (primordial) He abundance for stars belonging to the Na-rich/O-poor population of GC stars in a temperature regime where the He content is not altered by sedimentation or extreme mixing as suggested for the hottest, late helium flash HB stars. Our results support theoretical predictions that the Na-rich/O-poor population is also more He-rich than the Na-poor/O-rich generation and that a leading contender for the 2^{nd} parameter is the He abundance.
58 - P. Bonifacio 2002
We make use of high resolution, high signal-to-noise ratio spectra of 12 turn-off stars in the metal-poor globular cluster NGC 6397 to measure its lithium content. We conclude that they all have the same lithium abundance A(Li) = 2.34 with a standard deviation of 0.056 dex. We use this result, together with Monte Carlo simulations, to estimate that the maximum allowed intrinsic scatter is of the order of 0.035 dex. This is a new stringent constraint to be fulfilled by stellar models which predict Li depletion. We argue that although a mild depletion of 0.1 -- 0.2 dex, as predicted by recent models, cannot be ruled out, there is no compelling reason for it. This fact, together with the good agreement with the Li abundance observed in field stars, supports the primordial origin of lithium in metal-poor stars. Taking the above value as the primordial lithium abundance implies a cosmic baryonic density which is either Omega_b h^2 = 0.016 +/- 0.004 or Omega_b h^2 = 0.005 ^{+0.0026}_{-0.0006}, from the predictions of standard big bang nucleosynthesis. The high baryonic density solution is in agreement with recent results on the primordial abundance of deuterium and 3He and on the estimates derived from the fluctuations of the cosmic microwave background.
Spectroscopy has shown the presence of the CN band dicothomy and the Na-O anticorrelations for 50--70% of the investigated samples in the cluster 47 Tuc, otherwise considered a normal prototype of high metallicity clusters from the photometric analys is. Very recently, the re-analysis of a large number of archival HST data of the cluster core has been able to put into evidence the presence of structures in the Sub Giant Branch: it has a brighter component with a spread in magnitude by $sim$0.06 mag and a second one, made of about 10% of stars, a little fainter (by $sim$0.05 mag). These data also show that the Main Sequence of the cluster has an intrinsic spread in color which, if interpreted as due to a small spread in helium abundance, suggests $Delta$Y$sim$0.027. In this work we examine in detail whether the Horizontal Branch morphology and the Sub Giant structure provide further independent indications that a real --although very small-helium spread is present in the cluster. We re--analyze the HST archival data for the Horizontal Branch of 47 Tuc, obtaining a sample of $sim$500 stars with very small photometric errors, and build population synthesis based on new models to show that its particular morphology can be better explained by taking into account a spread in helium abundance of 2% in mass. The same variation in helium is able to explain the spread in luminosity of the Sub Giant Branch, while a small part of the second generation is characterized by a small C+N+O increase and provides an explanation for the fainter Sub Giant Branch. We conclude that three photometric features concur to form the paradigm that a small but real helium spread is present in a cluster that has no spectacular evidence for multiple populations like those shown by other massive clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا