ترغب بنشر مسار تعليمي؟ اضغط هنا

The mass of the neutron star in Vela X-1 and tidally induced non-radial oscillations in GP Vel

213   0   0.0 ( 0 )
 نشر من قبل Andrew J. Norton
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report new radial velocity observations of GP Vel/HD77581, the optical companion to the eclipsing X-ray pulsar Vela X-1. Using data spanning more than two complete orbits of the system, we detect evidence for tidally induced non-radial oscillations on the surface of GP Vel, apparent as peaks in the power spectrum of the residuals to the radial velocity curve fit. By removing the effect of these oscillations (to first order) and binning the radial velocities, we have determined the semi-amplitude of the radial velocity curve of GP Vel to be K_o=22.6+/-1.5 km/s. Given the accurately measured semi-amplitude of the pulsars orbit, the mass ratio of the system is 0.081+/-0.005. We are able to set upper and lower limits on the masses of the component stars as follows. Assuming GP Vel fills its Roche lobe then the inclination angle of the system, i=70.1+/-2.6 deg. In this case we obtain the masses of the two stars as M_x=2.27 +/-0.17 M_sun for the neutron star and M_o=27.9+/-1.3 M_sun for GP Vel. Conversely, assuming the inclination angle is i=90 deg, the ratio of the radius of GP Vel to the radius of its Roche lobe is beta=0.89+/-0.03 and the masses of the two stars are M_x=1.88+/-0.13 M_sun and M_o=23.1+/-0.2 M_sun. A range of solutions between these two sets of limits is also possible, corresponding to other combinations of i and beta. In addition, we note that if the zero phase of the radial velocity curve is allowed as a free parameter, rather than constrained by the X-ray ephemeris, a significantly improved fit is obtained with an amplitude of 21.2+/-0.7 km/s and a phase shift of 0.033+/-0.007 in true anomaly. The apparent shift in the zero phase of the radial velocity curve may indicate the presence of an additional radial velocity component at the orbital period.



قيم البحث

اقرأ أيضاً

We measured the radial-velocity curve of HD77581, the B-supergiant companion of the X-ray pulsar Vela X-1, using 183 high-resolution optical spectra obtained in a nine-month campaign. We derive radial-velocity amplitudes for different lines and wavel ength regions, and find all are consistent with each other, as well as with values found in previous analyses. We show that one apparent exception, an anomalously low value derived from ultra-violet spectra obtained with the IUE, was due to an error in the analysis procedures. We re-analyse all IUE spectra, and combine the resulting velocities with the ones derived from the new optical spectra presented here, as well as those derived from optical spectra published earlier. As in previous analyses, the radial velocities show strong deviations from those expected for a pure Keplerian orbit. The deviations likely are related to the pronounced line-profile variations seen in our spectra. It turns out that systematic deviations as a function of orbital phase are present. Our best estimate of the radial-velocity amplitude, Kopt = 21.7 +/- 1.6 km/s, has an uncertainty not much reduced to that found in previous analyses, in which the systematic deviations had not been taken into account. Combining our velocity amplitude with the accurate orbital elements of the X-ray pulsar, we infer M_ns sin^3i = 1.78 +/- 0.15 Msun.
Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectrosc opy at orbital phase ~0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannot be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium and neon whose strengths and presence depend on the overall level of absorption. They imply a co-existence of cool and hot gas phases in the system that we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.
Observations of quasi-periodic oscillations (QPOs) in the luminosity from many accreting neutron stars (NS) have led us to investigate a source of periodicity prevalent in other stars: non-radial oscillations. After summarizing the structure of the a tmosphere and ocean of an accreting NS, we discuss the various low l g-modes with frequencies in the 1-100 Hz range. Successful identification of a non-radial mode with an observed frequency would yield new information about the thermal and compositional makeup of the NS, as well as its radius. We close by discussing how rapid rotation changes the g-mode frequencies.
We have analyzed the time variability of the wide-band X-ray spectrum of Vela X-1, the brightest wind-fed accreting neutron star, on a short timescale of 2 ks by using {it Suzaku} observations with an exposure of 100 ks. During the observation, the o bject showed strong variability including several flares and so-called low states, in which the X-ray luminosity decreases by an order of magnitude. Although the spectral hardness increases with the X-ray luminosity, the majority of the recorded flares do not show any significant changes of circumstellar absorption. However, a sign of heavy absorption was registered immediately before one short flare that showed a significant spectral hardening. In the low states, the flux level is modulated with the pulsar spin period, indicating that even at this state the accretion flow reaches the close proximity of the neutron star. Phenomenologically, the broad-band X-ray spectra, which are integrated over the entire spin phase, are well represented by the NPEX function (a combination of negative and positive power laws with an exponential cutoff by a common folding energy) with a cyclotron resonance scattering feature at 50 keV. Fitting of the data allowed us to infer a correlation between the photon index and X-ray luminosity. Finally, the circumstellar absorption shows a gradual increase in the orbital phase interval 0.25--0.3, which can be interpreted as an impact of a bow shock imposed by the motion of the compact object in the supersonic stellar wind.
We present the analysis of seven emph{Chandra} High Energy Transmission Grating Spectrometer and six simultaneous emph{RXTE} Proportional Counter Array observations of the persistent neutron star (NS) low-mass X-ray binary GX 13+1 on its normal and h orizontal branches. Across nearly 10 years, GX 13+1 is consistently found to be accreting at $50-70$% Eddington, and all observations exhibit multiple narrow, blueshifted absorption features, the signature of a disk wind, despite the association of normal and horizontal branches with jet activity. A single absorber with standard abundances cannot account for all seven major disk wind features, indicating that multiple absorption zones may be present. Two or three absorbers can produce all of the absorption features at their observed broadened widths and reveal that multiple kinematic components produce the accretion disk wind signature. Assuming the most ionized absorber reflects the physical conditions closest to the NS, we estimate a wind launching radius of $7times10^{10}$ cm, for an electron density of $10^{12}$ cm$^{-3}$. This is consistent with the Compton radius and also with a thermally driven wind. Because of the sources high Eddington fraction, radiation pressure likely facilitates the wind launching.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا