ترغب بنشر مسار تعليمي؟ اضغط هنا

The Frequency and Radio Properties of Broad Absorption Line Quasars

91   0   0.0 ( 0 )
 نشر من قبل Paul C. Hewett
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A sample of 67 Broad Absorption Line quasars (BALQSOs) from the Large Bright Quasar Survey (LBQS) is used to estimate the observed and intrinsic fraction of BAL quasars in optically--selected samples at intermediate (B_J simeq 18.5) magnitudes. The observed BALQSO fraction in the redshift range 1.5 < z < 3.0 is 15pm3%. A well--determined, empirical, k--correction, to allow for the differences in the spectral energy distributions of non--BALQSOs and BALQSOs shortward of simeq 2100A in the restframe, is applied to the sample. The result is an estimate of the intrinsic fraction of BALQSOs, in the redshift range 1.5 < z < 3.0, of 22+/-4%. This value is twice that commonly cited for the occurrence of BALQSOs in optically--selected samples and the figure is in reasonable agreement with that from a preliminary analysis of the SDSS Early Data Release. The fraction of BALQSOs predicted to be present in an optical survey with flux limits equivalent to that of the FIRST Bright Quasar Survey (FBQS) is shown to be simeq 20%. The BALQSO fractions derived from the FBQS and the LBQS suggest that optically--bright BALQSOs are half as likely as non-BALQSOs to be detectable as S_1.4GHz > 1mJy radio sources.

قيم البحث

اقرأ أيضاً

We present multi-frequency observations of a sample of 15 radio-emitting Broad Absorption Line Quasars (BAL QSOs), covering a spectral range between 74 MHz and 43 GHz. They display mostly convex radio spectra which typically peak at about 1-5 GHz (in the observers rest-frame), flatten at MHz frequencies, probably due to synchrotron self-absorption, and become steeper at high frequencies, i.e., >~ 20 GHz. VLA 22-GHz maps (HPBW ~ 80 mas) show unresolved or very compact sources, with linear projected sizes of <= 1 kpc. About 2/3 of the sample look unpolarised or weakly polarised at 8.4 GHz, frequency in which reasonable upper limits could be obtained for polarised intensity. Statistical comparisons have been made between the spectral index distributions of samples of BAL and non-BAL QSOs, both in the observed and the rest-frame, finding steeper spectra among non-BAL QSOs. However constraining this comparison to compact sources results in no significant differences between both distributions. This comparison is consistent with BAL QSOs not being oriented along a particular line of sight. In addition, our analysis of the spectral shape, variability and polarisation properties shows that radio BAL QSOs share several properties common to young radio sources like Compact Steep Spectrum (CSS) or Gigahertz-Peaked Spectrum (GPS) sources.
We report spectropolarimetry of 30 radio-selected broad absorption line (BAL) quasars with the Keck Observatory, 25 from the sample of Becker et al. (2000). Both high and low-ionization BAL quasars are represented, with redshifts ranging from 0.5 to 2.5. The spectropolarimetric properties of radio-selected BAL quasars are very similar to those of radio-quiet BAL quasars: a sizeable fraction (20%) show large continuum polarization (2-10%) usually rising toward short wavelengths, emission lines are typically less polarized than the continuum, and absorption line troughs often show large polarization jumps. There are no significant correlations between polarization properties and radio properties, including those indicative of system orientation, suggesting that BAL quasars are not simply normal quasars seen from an edge-on perspective.
Broad absorption lines (BALs) are present in the spectra of ~20% of quasars (QSOs); this indicates fast outflows (up to 0.2c) that intercept the observers line of sight. These QSOs can be distinguished again into radio-loud (RL) BAL QSOs and radio-qu iet (RQ) BAL QSOs. The first are very rare, even four times less common than RQ BAL QSOs. The reason for this is still unclear and leaves open questions about the nature of the BAL-producing outflows and their connection with the radio jet. We explored the spectroscopic characteristics of RL and RQ BAL QSOs with the aim to find a possible explanation for the rarity of RL BAL QSOs. We identified two samples of genuine BAL QSOs from SDSS optical spectra, one RL and one RQ, in a suitable redshift interval (2.5$<z<$3.5) that allowed us to observe the Mg II and H$beta$ emission lines in the adjacent near-infrared (NIR) band. We collected NIR spectra of the two samples using the Telescopio Nazionale Galileo (TNG, Canary Islands). By using relations known in the literature, we estimated the black-hole mass, the broad-line region radius, and the Eddington ratio of our objects and compared the two samples. We found no statistically significant differences from comparing the distributions of the cited physical quantities. This indicates that they have similar geometries, accretion rates, and central black-hole masses, regardless of whether the radio-emitting jet is present or not. These results show that the central engine of BAL QSOs has the same physical properties with and without a radio jet. The reasons for the rarity of RL BAL QSOs must reside in different environmental or evolutionary variables.
Broad absorption line quasars (commonly termed BALQSOs) contain the most dramatic examples of AGN-driven winds. The high absorbing columns in these winds, ~10^24 cm^-2, ensure that BALQSOs are generally X-ray faint. This high X-ray absorption means t hat almost all BALQSOs have been discovered through optical surveys, and so what little we know about their X-ray properties is derived from very bright optically-selected sources. A small number of X-ray selected BALQSOs (XBALQSOs) have, however, recently been found in deep X-ray survey fields. In this paper we investigate the X-ray and rest-frame UV properties of five XBALQSOs for which we have obtained XMM-Newton EPIC X-ray spectra and deep optical imaging and spectroscopy. We find that, although the XBALQSOs have an alpha_ox steeper by ~0.5 than normal QSOs, their median alpha_ox is nevertheless flatter by 0.30 than that of a comparable sample of optically selected BALQSOs (OBALQSOs). We rule out the possibility that the higher X-ray to optical flux ratio is due to intrinsic optical extinction. We find that the amount of X-ray and UV absorption due to the wind in XBALQSOs is similar, or perhaps greater than, the corresponding wind absorption in OBALQSOs, so the flatter alpha_ox cannot be a result of weaker wind absorption. We conclude that these XBALQSOs have intrinsically higher X-ray to optical flux ratios than the OBALQSO sample with which we compare them.
This work presents the results of a Chandra study of 21 broad absorption line (BAL) radio-loud quasars (RLQs). We conducted a Chandra snapshot survey of 12 bright BAL RLQs selected from SDSS/FIRST data and possessing a wide range of radio and CIV abs orption properties. Optical spectra were obtained nearly contemporaneously with the Hobby-Eberly Telescope; no strong flux or BAL variability was seen between epochs. We also include in our sample 9 additional BAL RLQs possessing archival Chandra coverage. We compare the properties of (predominantly high-ionization) BAL RLQs to those of non-BAL RLQs as well as to BAL radio-quiet quasars (RQQs) and non-BAL RQQs for context. All 12 snapshot and 8/9 archival BAL RLQs are detected, with observed X-ray luminosities less than those of non-BAL RLQs having comparable optical/UV luminosities by typical factors of 4.1-8.5. (BAL RLQs are also X-ray weak by typical factors of 2.0-4.5 relative to non-BAL RLQs having both comparable optical/UV and radio luminosities.) However, BAL RLQs are not as X-ray weak relative to non-BAL RLQs as are BAL RQQs relative to non-BAL RQQs. While some BAL RLQs have harder X-ray spectra than typical non-BAL RLQs, some have hardness ratios consistent with those of non-BAL RLQs, and there does not appear to be a correlation between X-ray weakness and spectral hardness, in contrast to the situation for BAL RQQs. RLQs are expected to have X-ray continuum contributions from both disk-corona and small-scale jet emission. While the entire X-ray continuum in BAL RLQs cannot be obscured to the same degree as in BAL RQQs, we calculate that the jet is likely partially covered in many BAL RLQs. We comment briefly on implications for geometries and source ages in BAL RLQs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا