ترغب بنشر مسار تعليمي؟ اضغط هنا

The Birmingham-CfA cluster scaling project - I: gas fraction and the M-T relation

55   0   0.0 ( 0 )
 نشر من قبل Alastair Sanderson
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have assembled a large sample of virialized systems, comprising 66 galaxy clusters, groups and elliptical galaxies with high quality X-ray data. To each system we have fitted analytical profiles describing the gas density and temperature variation with radius, corrected for the effects of central gas cooling. We present an analysis of the scaling properties of these systems and focus in this paper on the gas distribution and M-T relation. In addition to clusters and groups, our sample includes two early-type galaxies, carefully selected to avoid contamination from group or cluster X-ray emission. We compare the properties of these objects with those of more massive systems and find evidence for a systematic difference between galaxy-sized haloes and groups of a similar temperature. We derive a mean logarithmic slope of the M-T relation within R_200 of 1.84+/-0.06, although there is some evidence of a gradual steepening in the M-T relation, with decreasing mass. We recover a similar slope using two additional methods of calculating the mean temperature. Repeating the analysis with the assumption of isothermality, we find the slope changes only slightly, to 1.89+/-0.04, but the normalization is increased by 30%. Correspondingly, the mean gas fraction within R_200 changes from (0.13+/-0.01)h70^-1.5 to (0.11+/-0.01)h70^-1.5, for the isothermal case, with the smaller fractional change reflecting different behaviour between hot and cool systems. There is a strong correlation between the gas fraction within 0.3*R_200 and temperature. This reflects the strong (5.8 sigma) trend between the gas density slope parameter, beta, and temperature, which has been found in previous work. (abridged)

قيم البحث

اقرأ أيضاً

We investigate the spatial distribution of the baryonic and non-baryonic mass components in a sample of 66 virialized systems. We have used X-ray measurements to determine the deprojected temperature and density structure of the intergalactic medium and have employed these to map the underlying gravitational potential. In addition, we have measured the deprojected spatial distribution of galaxy luminosity for a subset of this sample, spanning over 2 decades in mass. With this combined X-ray/optical study we examine the scaling properties of the baryons and address the issue of mass-to-light (M/L) ratio in groups and clusters of galaxies. We measure a median mass-to-light ratio of 224 h70 M/L (solar) in the rest frame B_j band, in good agreement with other measurements based on X-ray determined masses. There is no trend in M/L with X-ray temperature and no significant trend for mass to increase faster than luminosity: M propto L_{B,j}^{1.08 +/- 0.12}. This implied lack of significant variation in star formation efficiency suggests that gas cooling cannot be greatly enhanced in groups, unless it drops out to form baryonic dark matter. Correspondingly, our results indicate that non-gravitational heating must have played a significant role in establishing the observed departure from self-similarity in low mass systems. The median baryon fraction for our sample is 0.162 h70^{-3/2}, which allows us to place an upper limit on the cosmological matter density, Omega_m <= 0.27 h70^{-1}, in good agreement with the latest results from WMAP. We find evidence of a systematic trend towards higher central density concentration in the coolest haloes, indicative of an early formation epoch and consistent with hierarchical formation models.
We calibrate the galaxy cluster mass - temperature relation using the temperature profiles of intracluster gas observed with ASCA (for hot clusters) and ROSAT (for cool groups). Our sample consists of apparently relaxed clusters for which the total m asses are derived assuming hydrostatic equilibrium. The sample provides data on cluster X-ray emission-weighted cooling flow-corrected temperatures and total masses up to r_1000. The resulting M-T scaling in the 1-10 keV temperature range is M_1000 = (1.23 +- 0.20)/h_50 10^15 Msun (T/10 keV)^{1.79 +- 0.14} with 90% confidence errors, or significantly (99.99% confidence) steeper than the self-similar relation M propto T^{3/2}. For any given temperature, our measured mass values are significantly smaller compared to the simulation results of Evrard et al. (1996) that are frequently used for mass-temperature scaling. The higher-temperature subsample (kT > 4 keV) is consistent with M propto T^{3/2}, allowing the possibility that the self-similar scaling breaks down at low temperatures, perhaps due to heating by supernovae that is more important for low-temperature groups and galaxies as suggested by earlier works.
We introduce the GALEX Arecibo SDSS Survey (GASS), an on-going large program that is gathering high quality HI-line spectra using the Arecibo radio telescope for an unbiased sample of ~1000 galaxies with stellar masses greater than 10^10 Msun and red shifts 0.025<z<0.05, selected from the SDSS spectroscopic and GALEX imaging surveys. The galaxies are observed until detected or until a low gas mass fraction limit (1.5-5%) is reached. This paper presents the first Data Release, consisting of ~20% of the final GASS sample. We use this data set to explore the main scaling relations of HI gas fraction with galaxy structure and NUV-r colour. A large fraction (~60%) of the galaxies in our sample are detected in HI. We find that the atomic gas fraction decreases strongly with stellar mass, stellar surface mass density and NUV-r colour, but is only weakly correlated with galaxy bulge-to-disk ratio (as measured by the concentration index of the r-band light). We also find that the fraction of galaxies with significant (more than a few percent) HI decreases sharply above a characteristic stellar surface mass density of 10^8.5 Msun kpc^-2. The fraction of gas-rich galaxies decreases much more smoothly with stellar mass. One of the key goals of GASS is to identify and quantify the incidence of galaxies that are transitioning between the blue, star-forming cloud and the red sequence of passively-evolving galaxies. Likely transition candidates can be identified as outliers from the mean scaling relations between gas fraction and other galaxy properties. [abridged]
We forecast the constraints on the values of sigma_8, Omega_m, and cluster scaling relation parameters which we expect to obtain from the XMM Cluster Survey (XCS). We assume a flat Lambda-CDM Universe and perform a Monte Carlo Markov Chain analysis o f the evolution of the number density of galaxy clusters that takes into account a detailed simulated selection function. Comparing our current observed number of clusters shows good agreement with predictions. We determine the expected degradation of the constraints as a result of self-calibrating the luminosity-temperature relation (with scatter), including temperature measurement errors, and relying on photometric methods for the estimation of galaxy cluster redshifts. We examine the effects of systematic errors in scaling relation and measurement error assumptions. Using only (T,z) self-calibration, we expect to measure Omega_m to +-0.03 (and Omega_Lambda to the same accuracy assuming flatness), and sigma_8 to +-0.05, also constraining the normalization and slope of the luminosity-temperature relation to +-6 and +-13 per cent (at 1sigma) respectively in the process. Self-calibration fails to jointly constrain the scatter and redshift evolution of the luminosity-temperature relation significantly. Additional archival and/or follow-up data will improve on this. We do not expect measurement errors or imperfect knowledge of their distribution to degrade constraints significantly. Scaling-relation systematics can easily lead to cosmological constraints 2sigma or more away from the fiducial model. Our treatment is the first exact treatment to this level of detail, and introduces a new `smoothed ML estimate of expected constraints.
We characterize the X-ray luminosity--temperature ($L_{rm X}-T$) relation using a sample of 353 clusters and groups of galaxies with temperatures in excess of 1 keV, spanning the redshift range $0.1 < z < 0.6$, the largest ever assembled for this pur pose. All systems are part of the ${it XMM-Newton}$ Cluster Survey (XCS), and have also been independently identified in Sloan Digital Sky Survey (SDSS) data using the redMaPPer algorithm. We allow for redshift evolution of the normalisation and intrinsic scatter of the $L_{rm X}-T$ relation, as well as, for the first time, the possibility of a temperature-dependent change-point in the exponent of such relation. However, we do not find strong statistical support for deviations from the usual modelling of the $L_{rm X}-T$ relation as a single power-law, where the normalisation evolves self-similarly and the scatter remains constant with time. Nevertheless, assuming {it a priori} the existence of the type of deviations considered, then faster evolution than the self-similar expectation for the normalisation of the $L_{rm X}-T$ relation is favoured, as well as a decrease with redshift in the scatter about the $L_{rm X}-T$ relation. Further, the preferred location for a change-point is then close to 2 keV, possibly marking the transition between the group and cluster regimes. Our results also indicate an increase in the power-law exponent of the $L_{rm X}-T$ relation when moving from the group to the cluster regime, and faster evolution in the former with respect to the later, driving the temperature-dependent change-point towards higher values with redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا