ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray Spectroscopy and Variability of AGN Detected in the 2 Ms Chandra Deep Field-North Survey

99   0   0.0 ( 0 )
 نشر من قبل Franz Bauer
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the nature of the faint X-ray source population through X-ray spectroscopy and variability analyses of 136 AGN detected in the 2 Ms Chandra Deep Field-North survey with > 200 background-subtracted 0.5-8.0 keV counts [F(0.5-8.0 keV)=(1.4-200)e-15 erg cm^{-2} s^{-1}]. Our preliminary spectral analyses yield median spectral parameters of Gamma=1.61 and intrinsic N_H=6.2e21 cm^{-2} (z=1 assumed when no redshift available) when the AGN spectra are fitted with a simple absorbed power-law model. However, considerable spectral complexity is apparent (e.g., reflection, partial covering) and must be taken into account to model the data accurately. Moreover, the choice of spectral model (i.e., free vs. fixed photon index) has a pronounced effect on the derived N_H distribution and, to a lesser extent, the X-ray luminosity distribution. Ten of the 136 AGN (~7%) show significant Fe Kalpha emission-line features with equivalent widths in the range 0.1-1.3 keV. Two of these emission-line AGN could potentially be Compton thick (i.e., Gamma < 1.0 and large Fe Kalpha equivalent width). Finally, we find that 81 (~60%) of the 136 AGN show signs of variability, and that this fraction increases significantly (~80-90%) when better photon statistics are available.



قيم البحث

اقرأ أيضاً

We systematically analyze X-ray variability of active galactic nuclei (AGNs) in the 7~Ms textit{Chandra} Deep Field-South survey. On the longest timescale ($approx~17$ years), we find only weak (if any) dependence of X-ray variability amplitudes on e nergy bands or obscuration. We use four different power spectral density (PSD) models to fit the anti-correlation between normalized excess variance ($sigma^2_{rm nxv}$) and luminosity, and obtain a best-fit power law index $beta=1.16^{+0.05}_{-0.05}$ for the low-frequency part of AGN PSD. We also divide the whole light curves into 4 epochs in order to inspect the dependence of $sigma^2_{rm nxv}$ on these timescales, finding an overall increasing trend. The analysis of these shorter light curves also infers a $beta$ of $sim 1.3$ that is consistent with the above-derived $beta$, which is larger than the frequently-assumed value of $beta=1$. We then investigate the evolution of $sigma^2_{rm nxv}$. No definitive conclusion is reached due to limited source statistics but, if present, the observed trend goes in the direction of decreasing AGN variability at fixed luminosity toward large redshifts. We also search for transient events and find 6 notable candidate events with our considered criteria. Two of them may be a new type of fast transient events, one of which is reported here for the first time. We therefore estimate a rate of fast outbursts $langledot{N}rangle = 1.0^{+1.1}_{-0.7}times 10^{-3}~rm galaxy^{-1}~yr^{-1}$ and a tidal disruption event~(TDE) rate $langledot{N}_{rm TDE}rangle=8.6^{+8.5}_{-4.9}times 10^{-5}~rm galaxy^{-1}~yr^{-1}$ assuming the other four long outbursts to be TDEs.
We present catalogs for the ~2 Ms Chandra Deep Field-North, currently the deepest X-ray observation of the Universe in the 0.5-8.0 keV band. Five hundred and three (503) X-ray sources are detected over an ~448 sq.arcmin area in up to seven bands; 20 of these X-ray sources lie in the Hubble Deep Field-North. Source positions are determined using matched-filter and centroiding techniques; the median positional uncertainty is ~0.3 arcsecs. The X-ray colors of the detected sources indicate a broad variety of source types, although absorbed AGNs (including some possible Compton-thick sources) are clearly the dominant type. We also match lower significance X-ray sources to optical counterparts and provide a list of 79 optically bright R<~23) lower significance Chandra sources. The majority of these sources appear to be starburst and normal galaxies. We investigate the source-free background, determine the maximum photon-limited exposures, and investigate source confusion. These analyses directly show that Chandra can achieve significantly higher sensitivities in an efficient nearly photon-limited manner and be largely free of source confusion. To allow consistent comparisons, we have also produced point-source catalogs for the ~1 Ms Chandra Deep Field-South (CDF-S). Three hundred and twenty-six (326) X-ray sources are included in the main Chandra catalog, and an additional 42 optically bright X-ray sources are included in a lower significance Chandra catalog. We find good agreement with the photometry of the previously published CDF-S catalogs; however, we provide significantly improved positional accuracy (ABRIDGED).
With ~2 Ms of Chandra exposure, the Chandra Deep Field-North (CDF-N) survey provides the deepest view of the Universe in the 0.5-8.0 keV band. Five hundred and three (503) X-ray sources are detected down to on-axis 0.5-2.0 keV and 2-8 keV flux limits of ~1.5x10^{-17} erg cm^{-2} s^{-1} and ~1.0x10^{-16} erg cm^{-2} s^{-1}, respectively. These flux limits correspond to L_{0.5-8.0 keV}~3x10^{41} erg s^{-1} at z=1 and L_{0.5-8.0 keV}~2x10^{43} erg s^{-1} at z=6; thus this survey is sensitive enough to detect starburst galaxies out to moderate redshift and Seyfert galaxies out to high redshift. We present the X-ray observations, describe the broad diversity of X-ray selected sources, and review the prospects for deeper Chandra exposures.
74 - Y. Q. Xue , B. Luo , W. N. Brandt 2016
We present improved point-source catalogs for the 2 Ms Chandra Deep Field-North (CDF-N) and the 250 ks Extended Chandra Deep Field-South (E-CDF-S), implementing a number of recent improvements in Chandra source-cataloging methodology. For the CDF-N/E -CDF-S, we provide a main catalog that contains 683/1003 X-ray sources detected with wavdetect at a false-positive probability threshold of $10^{-5}$ that also satisfy a binomial-probability source-selection criterion of $P<0.004$/$P<0.002$. Such an approach maximizes the number of reliable sources detected: a total of 196/275 main-catalog sources are new compared to the Alexander et al. (2003) CDF-N/Lehmer et al. (2005) E-CDF-S main catalogs. We also provide CDF-N/E-CDF-S supplementary catalogs that consist of 72/56 sources detected at the same wavdetect threshold and having $P$ of $0.004-0.1$/$0.002-0.1$ and $K_sle22.9/K_sle22.3$ mag counterparts. For all $approx1800$ CDF-N and E-CDF-S sources, including the $approx500$ newly detected ones (these being generally fainter and more obscured), we determine X-ray source positions utilizing centroid and matched-filter techniques; we also provide multiwavelength identifications, apparent magnitudes of counterparts, spectroscopic and/or photometric redshifts, basic source classifications, and estimates of observed AGN and galaxy source densities around respective field centers. Simulations show that both the CDF-N and E-CDF-S main catalogs are highly reliable and reasonably complete. Background and sensitivity analyses indicate that the on-axis mean flux limits reached represent a factor of $approx1.5-2.0$ improvement over the previous CDF-N and E-CDF-S limits. We make our data products publicly available.
An extremely deep X-ray survey (about 1 Ms) of the Hubble Deep Field North and its environs (about 450 arcmin^2) has been performed with the Advanced CCD Imaging Spectrometer on board the Chandra X-ray Observatory. This is one of the two deepest X-ra y surveys ever performed; for point sources near the aim point it reaches 0.5-2.0 keV and 2-8 keV flux limits of 3 x 10^{-17} erg/cm^2/s and 2 x 10^{-16} erg/cm^2/s, respectively. Here we provide source catalogs along with details of the observations, data reduction, and technical analysis. Observing conditions, such as background, were excellent for almost all of the exposure. We have detected 370 distinct point sources: 360 in the 0.5-8.0 keV band, 325 in the 0.5-2.0 keV band, 265 in the 2-8 keV band, and 145 in the 4-8 keV band. Two new Chandra sources in the HDF-N itself are reported and discussed. Source positions are accurate to within 0.6-1.7 arcsec (at 90% confidence) depending mainly on the off-axis angle. We also detect two highly significant extended X-ray sources and several other likely extended X-ray sources. We present basic number count results for sources located near the center of the field. Source densities of 7100^{+1100}_{-940} deg^{-2} (at 4.2 x 10^{-17} erg/cm^2/s) and 4200^{+670}_{-580} deg^{-2} (at 3.8 x 10^{-16} erg/cm^2/s) are observed in the soft and hard bands, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا