ﻻ يوجد ملخص باللغة العربية
We report the first measurements of anisotropy in the cosmic microwave background (CMB) radiation with the Arcminute Cosmology Bolometer Array Receiver (ACBAR). The instrument was installed on the 2.1m Viper telescope at the South Pole in January 2001; the data presented here are the product of observations up to and including July 2002. The two deep fields presented here, have had offsets removed by subtracting lead and trail observations and cover approximately 24 deg^2 of sky selected for low dust contrast. These results represent the highest signal to noise observations of CMB anisotropy to date; in the deepest 150GHz band map, we reached an RMS of 8.0mu K per 5 beam. The 3 degree extent of the maps, and small beamsize of the experiment allow the measurement of the CMB anisotropy power spectrum over the range ell = 150-3000 with resolution of Delta ell=150. The contributions of galactic dust and radio sources to the observed anisotropy are negligible and are removed in the analysis. The resulting power spectrum is found to be consistent with the primary anisotropy expected in a concordance Lambda CDM Universe.
In this paper, we present results from the complete set of cosmic microwave background (CMB) radiation temperature anisotropy observations made with the Arcminute Cosmology Bolometer Array Receiver (ACBAR) operating at 150 GHz. We include new data fr
We report improved measurements of temperature anisotropies in the cosmic microwave background (CMB) radiation made with the Arcminute Cosmology Bolometer Array Receiver (ACBAR). In this paper, we use a new analysis technique and include 30% more dat
We report an investigation of cosmological parameters based on the measurements of anisotropy in the cosmic microwave background radiation (CMB) made by ACBAR. We use the ACBAR data in concert with other recent CMB measurements to derive Bayesian est
We present a method to measure the small-scale matter power spectrum using high-resolution measurements of the gravitational lensing of the Cosmic Microwave Background (CMB). To determine whether small-scale structure today is suppressed on scales be
We present deep Ka-band ($ u approx 33$ GHz) observations of the CMB made with the extended Very Small Array (VSA). This configuration produces a naturally weighted synthesized FWHM beamwidth of $sim 11$ arcmin which covers an $ell$-range of 300 to 1