ﻻ يوجد ملخص باللغة العربية
Non-LTE abundances of magnesium, aluminum and sulfur are derived for a sample of 23 low-v sin i stars belonging to six northern OB associations of the Galactic disk within 1 kpc of the Sun. The abundances are obtained from the fitting of synthetic line profiles to high resolution spectra. A comparison of our results with HII region abundances indicates good agreement for sulfur while the cepheid abundances are higher. The derived abundances of Mg show good overlap with the cepheid results. The aluminum abundances for OB stars are significantly below the cepheid values. But, the OB star results show a dependence with effective temperature and need further investigation. The high Al abundances in the cepheids could be the result of mixing. A discussion of the oxygen abundance in objects near the solar circle suggests that the current mean galactic oxygen abundance in this region is 8.6-8.7 and in agreement with the recently revised oxygen abundance in the solar photosphere. Meaningful comparisons of the absolute S, Al and Mg abundances in OB stars with the Sun must await a reinvestigation of these elements, as well as the meteoritic reference element Si, with 3D hydrodynamical model atmospheres for the Sun. No abundance gradients are found within the limited range in galactocentric distances in the present study. Such variations would be expected only if there were large metallicity gradients in the disk.
The aim of this study is to analyse and determine elemental abundances for a large sample of distant B stars in the outer Galactic disk in order to constrain the chemical distribution of the Galactic disk and models of chemical evolution of the Galax
Aluminium plays a key role in studies of the chemical enrichment of the Galaxy and of globular clusters. However, strong deviations from LTE (non-LTE) are known to significantly affect the inferred abundances in giant and metal-poor stars. We present
In the aim of determining accurate iron abundances in stars, this work is meant to empirically calibrate H-collision cross-sections with iron, where no quantum mechanical calculations have been published yet. Thus, a new iron model atom has been deve
Sulfur abundances are derived for a sample of ten B main-sequence star members of the Orion association. The analysis is based on LTE plane-parallel model atmospheres and non-LTE line formation theory by means of a self-consistent spectrum synthesis
A non-LTE (NLTE) abundance analysis was carried out for three extreme helium stars (EHes): BD+10 2179, BD-9 4395, and LS IV+6 002, from their optical spectra with NLTE model atmospheres. NLTE TLUSTY model atmospheres were computed with H, He, C, N, O