ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-LTE Abundances of Magnesium, Aluminum and Sulfur in OB Stars Near the Solar Circle

99   0   0.0 ( 0 )
 نشر من قبل Simone Daflon
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-LTE abundances of magnesium, aluminum and sulfur are derived for a sample of 23 low-v sin i stars belonging to six northern OB associations of the Galactic disk within 1 kpc of the Sun. The abundances are obtained from the fitting of synthetic line profiles to high resolution spectra. A comparison of our results with HII region abundances indicates good agreement for sulfur while the cepheid abundances are higher. The derived abundances of Mg show good overlap with the cepheid results. The aluminum abundances for OB stars are significantly below the cepheid values. But, the OB star results show a dependence with effective temperature and need further investigation. The high Al abundances in the cepheids could be the result of mixing. A discussion of the oxygen abundance in objects near the solar circle suggests that the current mean galactic oxygen abundance in this region is 8.6-8.7 and in agreement with the recently revised oxygen abundance in the solar photosphere. Meaningful comparisons of the absolute S, Al and Mg abundances in OB stars with the Sun must await a reinvestigation of these elements, as well as the meteoritic reference element Si, with 3D hydrodynamical model atmospheres for the Sun. No abundance gradients are found within the limited range in galactocentric distances in the present study. Such variations would be expected only if there were large metallicity gradients in the disk.



قيم البحث

اقرأ أيضاً

The aim of this study is to analyse and determine elemental abundances for a large sample of distant B stars in the outer Galactic disk in order to constrain the chemical distribution of the Galactic disk and models of chemical evolution of the Galax y. Here, we present preliminary results on a few stars along with the adopted methodology based on securing simultaneous O and Si ionization equilibria with consistent NLTE model atmospheres.
Aluminium plays a key role in studies of the chemical enrichment of the Galaxy and of globular clusters. However, strong deviations from LTE (non-LTE) are known to significantly affect the inferred abundances in giant and metal-poor stars. We present NLTE modeling of aluminium using recent and accurate atomic data, in particular utilizing new transition rates for collisions with hydrogen atoms, without the need for any astrophysically calibrated parameters. For the first time, we perform 3D NLTE modeling of aluminium lines in the solar spectrum. We also compute and make available extensive grids of abundance corrections for lines in the optical and near-infrared using one-dimensional model atmospheres, and apply grids of precomputed departure coefficients to direct line synthesis for a set of benchmark stars with accurately known stellar parameters. Our 3D NLTE modeling of the solar spectrum reproduces observed center-to-limb variations in the solar spectrum of the 7835 {AA} line as well as the mid-infrared photospheric emission line at 12.33 micron. We infer a 3D NLTE solar photospheric abundance of A(Al) = 6.43+-0.03, in exact agreement with the meteoritic abundance. We find that abundance corrections vary rapidly with stellar parameters; for the 3961 {AA} resonance line, corrections are positive and may be as large as +1 dex, while corrections for subordinate lines generally have positive sign for warm stars but negative for cool stars. Our modeling reproduces the observed line profiles of benchmark K-giants, and we find abundance corrections as large as -0.3 dex for Arcturus. Our analyses of four metal-poor benchmark stars yield consistent abundances between the 3961 {AA} resonance line and lines in the UV, optical and near-infrared regions. Finally, we discuss implications for the galactic chemical evolution of aluminium.
In the aim of determining accurate iron abundances in stars, this work is meant to empirically calibrate H-collision cross-sections with iron, where no quantum mechanical calculations have been published yet. Thus, a new iron model atom has been deve loped, which includes hydrogen collisions for excitation, ionization and charge transfer processes. We show that collisions with hydrogen leading to charge transfer are important for an accurate non-LTE modeling. We apply our calculations on several benchmark stars including the Sun, the metal-rich star {alpha} Cen A and the metal-poor star HD140283.
157 - Simone Daflon 2009
Sulfur abundances are derived for a sample of ten B main-sequence star members of the Orion association. The analysis is based on LTE plane-parallel model atmospheres and non-LTE line formation theory by means of a self-consistent spectrum synthesis analysis of lines from two ionization states of sulfur, SII and SIII. The observations are high-resolution spectra obtained with the ARCES spectrograph at the Apache Point Observatory. The abundance distribution obtained for the Orion targets is homogeneous within the expected errors in the analysis: A(S)=7.15+/-0.05. This average abundance result is in agreement with the recommended solar value (both from modelling of the photospheres in 1-D and 3-D, and meteorites) and indicates that little, if any, chemical evolution of sulfur has taken place in the last ~4.5 billion years. The sulfur abundances of the young stars in Orion are found to agree well with results for the Orion nebulae, and place strong constraints on the amount of sulfur depletion onto grains as being very modest or nonexistent. The sulfur abundances for Orion are consistent with other measurements at a similar galactocentric radius: combined with previous results for other OB-type stars produce a relatively shallow sulfur abundance gradient with a slope of -0.037+/-0.012 dex/kpc.
A non-LTE (NLTE) abundance analysis was carried out for three extreme helium stars (EHes): BD+10 2179, BD-9 4395, and LS IV+6 002, from their optical spectra with NLTE model atmospheres. NLTE TLUSTY model atmospheres were computed with H, He, C, N, O , and Ne treated in NLTE. Model atmosphere parameters were chosen from consideration of fits to observed He I line profiles and ionization equilibria of C and N ions. The program SYNSPEC was then used to determine the NLTE abundances for Ne as well as H, He, C, N, and O. LTE neon abundances from Ne I lines in the EHes: LSE 78, V1920 Cyg, HD 124448, and PV Tel, are derived from published models and an estimate of the NLTE correction applied to obtain the NLTE Ne abundance. We show that the derived abundances of these key elements, including Ne, are well matched with semi-quantitative predictions for the EHe resulting from a cold merger (i.e., no nucleosynthesis during the merger) of a He white dwarf with a C-O white dwarf.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا