ترغب بنشر مسار تعليمي؟ اضغط هنا

The Rotational Velocity of Helium-rich Pre-White Dwarfs

65   0   0.0 ( 0 )
 نشر من قبل Dr. Thomas Rauch
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous investigations on hydrogen-rich white dwarfs generally yield only very small rotational velocities (v_rot sin i). We have analyzed line profiles in high-resolution optical spectra of eight hydrogen-deficient (pre-) white dwarfs and find deviations from the dominant Stark line broadening in five cases which, interpreted as an effect of stellar rotation, indicate projected rotational velocities of 40 - 70 km/sec. For the three least luminous stars upper limits of v_rot sin i = 15 - 25 km/sec could be derived only. The resulting velocities correlate with luminosity and mass. However, since the mass-loss rate is correlated to the luminosity of a star, the observed line profiles may be affected by a stellar wind as well. In the case of RX J2117.1+3412, this would solve discrepancies to results of pulsational modeling (v_rot sin i ~ 0).

قيم البحث

اقرأ أيضاً

81 - S. Friedrich 2000
We present an analysis of 40 cool helium-rich white dwarfs found in the Hamburg/ESO survey. They were selected for follow-up spectroscopy because of their U-B colour below -0.18, the absence of strong absorption lines, and a continuum shape similar t o that of a quasar. Effective temperatures for individual stars were determined by fitting model atmospheres of nearly pure helium with a small admixture of hydrogen. As a consequence of the selection criteria all but one sample stars have Teff below 20000 K. Four stars clearly show helium and hydrogen lines in their spectra. In the spectra of another three, helium, hydrogen, and metal lines can be detected. For these stars hydrogen and metal abundances were also determined by fitting appropriate model atmospheres containing these elements. Seven sample stars most likely have helium-rich atmospheres but do not show any helium lines. They either have featureless spectra or show calcium lines.
Spectra have been obtained of 21 white dwarfs (WDs) in the direction of the young, rich open star cluster NGC 2099. This represents an appreciable fraction (>30%) of the clusters total WD population. The mean derived mass of the sample is 0.8 Msun - about 0.2 Msun larger than the mean seen among field WDs. A surprising result is that all of the NGC 2099 WDs have hydrogen-rich atmospheres (DAs) and none exhibit helium-rich ones (DBs), or any other spectral class. The number ratio in the field at the temperatures of the NGC 2099 WDs is DA/DB ~ 3.5. While the probability of seeing no DB WDs in NGC 2099 solely by chance is ~2%, if we include WDs in other open clusters of similar age it then becomes highly unlikely that the dearth of DB WDs in young open clusters is just a statistical fluctuation. We explore possible reasons for the lack of DBs in these clusters and conclude that the most promising scenario for the DA/DB number ratio discrepancy in young clusters is that hot, high-mass WDs do not develop large enough helium convection zones to allow helium to be brought to the surface and turn a hydrogen-rich WD into a helium-rich one.
We present a homogeneous analysis of 1023 DBZ/DZ(A) and 319 DQ white dwarf stars taken from the Montreal White Dwarf Database. This represents a significant increase over the previous comprehensive studies on these types of objects. We use new trigon ometric parallax measurements from the Gaia second data release, together with photometry from the Sloan Digital Sky Survey, Pan-STARRS, Gaia, or BVRI from the literature, which allow the determination of the mass for the majority of the objects in our sample. We use the photometric and spectroscopic techniques with the most recent model atmospheres available, which include high-density effects, to accurately determine the effective temperature, surface gravity, and heavy element abundances for each object. We study the abundance of hydrogen in DBZ/DZ white dwarfs and the properties of the accreted planetesimals. We explore the nature of the second sequence of DQ stars using proper motions from Gaia, and highlight evidence of crystallization in massive DQ stars. We also present mass distributions for both spectral types. Finally, we discuss the implications of our findings in the context of the spectral evolution of white dwarfs, and provide the atmospheric parameters for each star.
Here, we present near-infrared spectroscopic observations of 15 helium atmosphere, metal-rich white dwarfs obtained at the NASA Infrared Telescope Facility. While a connection has been demonstrated between the most highly polluted, hydrogen atmospher e white dwarfs and the presence of warm circumstellar dust and gas, their frequency at the helium atmosphere variety is poorly constrained. None of our targets show excess near-infrared radiation consistent with warm orbiting material. Adding these near-infrared constraints to previous near- and mid-infrared observations, the frequency of warm circumstellar material at metal-bearing white dwarfs is at least 20% for hydrogen-dominated photospheres, but could be less than 5% for those effectively composed of helium alone. The lower occurrence of dust disks around helium atmosphere white dwarfs is consistent with Myr timescales for photospheric metals in massive convection zones. Analyzing the mass distribution of 10 white dwarfs with warm circumstellar material, we search for similar trends between the frequency of disks and the predicted frequency of massive planets around intermediate mass stars, but find the probability that disk-bearing white dwarfs are more massive than average is not significant.
106 - T. Driebe 1999
We calculated a grid of evolutionary models for white dwarfs with helium cores (He-WDs) and investigated the occurrence of hydrogen-shell flashes due to unstable hydrogen burning via CNO cycling. Our calculations show that such thermal instabilities are restricted to a certain mass range (M=0.21...0.30Msun), consistent with earlier studies. Models within this mass range undergo the more hydrogen shell flashes the less massive they are. This is caused by the strong dependence of the envelope mass on the white dwarf core mass. The maximum luminosities from hydrogen burning during the flashes are of the order of 10^5 Lsun. Because of the development of a pulse-driven convection zone whose upper boundary temporarily reaches the surface layers, the envelopes hydrogen content decreases by Delta(X)=0.06 per flash. Our study further shows that an additional high mass-loss episode during a flash-driven Roche lobe overflow to the white dwarfs companion does not affect the final cooling behaviour of the models. Independent of hydrogen shell flashes the evolution along the final white dwarf cooling branch is determined by hydrogen burning via pp-reactions down to effective temperatures as low as 8000 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا