ترغب بنشر مسار تعليمي؟ اضغط هنا

The SCUBA Bright Quasar Survey II: unveiling the quasar epoch at submillimetre wavelengths

74   0   0.0 ( 0 )
 نشر من قبل Robert Priddey
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Robert S. Priddey




اسأل ChatGPT حول البحث

We present results of the first systematic search for submillimetre continuum emission from z=2, radio-quiet, optically-luminous quasars, using the SCUBA/JCMT. We have observed a homogeneous sample of 57 quasars in the redshift range 1.5<z<3.0- the epoch during which the comoving density of luminous AGN peaks- to make a systematic comparison with an equivalent sample at high (z>4) redshift. The target sensitivity of the survey (3sigma=10mJy at 850um) was chosen to enable efficient identification of bright submm sources, suitable for detailed follow-up. 9 targets are detected, with fluxes in the range 7-17mJy. Although there is a suggestion of variation of submm detectability between z=2 and z=4, this is consistent with the K-correction of a characteristic far-infrared spectrum. Additionally, the weighted mean fluxes of non-detections at z=2 and z>4 are comparable.



قيم البحث

اقرأ أيضاً

We present the first data release (DR1) from our UV-bright Quasar Survey (UVQS) for new $z sim 1$ active galactic nuclei (AGN) across the sky. Using simple GALEX UV and WISE near-IR color selection criteria, we generated a list of 1450 primary candid ates with $FUV < 18.5$ mag. We obtained discovery spectra, primarily on 3m-class telescopes, for 1040 of these candidates and confirmed 86% as AGN with redshifts generally at $z>0.5$. Including a small set of observed secondary candidates, we report the discovery of 217 AGN with $FUV < 18$ mag that had no previously reported spectroscopic redshift. These are excellent potential targets for UV spectroscopy before the end of the {it Hubble Space Telescope} mission. The main data products are publicly released through the Mikulski Archive for Space Telescopes.
We have used the VLA FIRST survey and the APM catalog of the POSS-I plates as the basis for constructing a new radio-selected sample of optically bright quasars. This is the first radio-selected sample that is competitive in size with current optical ly selected quasar surveys. Using only two basic criteria, radio-optical positional coincidence and optical morphology, quasars and BL Lacs can be identified with 60% selection efficiency; the efficiency increases to 70% for objects fainter than magnitude 17. We show that a more sophisticated selection scheme can predict with better than 85% reliability which candidates will turn out to be quasars. This paper presents the second installment of the FIRST Bright Quasar Survey with a catalog of 636 quasars distributed over 2682 square degrees. The quasar sample is characterized and all spectra are displayed. The FBQS detects both radio-loud and radio-quiet quasars out to a redshift z>3. We find a large population of objects of intermediate radio-loudness; there is no evidence in our sample for a bimodal distribution of radio characteristics. The sample includes ~29 broad absorption line quasars, both high and low ionization, and a number of new objects with remarkable optical spectra.
We present the results of the spectroscopic follow up of the QUBRICS survey. The selection method is based on a machine learning approach applied to photometric catalogs, covering an area of $sim$ 12,400 deg$^2$ in the Southern Hemisphere. The spectr oscopic observations started in 2018 and identified 55 new, high-redshift (z>=2.5), bright (i<=18) QSOs, with the catalog published in late 2019. Here we report the current status of the survey, bringing the total number of bright QSOs at z<=2.5 identified by QUBRICS to 224. The success rate of the QUBRICS selection method, in its most recent training, is estimated to be 68%. The predominant contaminant turns out to be lower-z QSOs at z<2.5. This survey provides a unique sample of bright QSOs at high-z available for a number of cosmological investigations. In particular, carrying out the redshift drift measurements (Sandage Test) in the Southern Hemisphere, using the HIRES spectrograph at the 39m ELT, appears to be possible with less than 2500 hours of observations spread over 30 targets in 25 years.
117 - Sebastian Jester 2005
We investigate the extent to which the Palomar-Green (PG) Bright Quasar Survey (BQS) is complete and representative of the general quasar population by comparing with imaging and spectroscopy from the Sloan Digital Sky Survey. A comparison of SDSS an d PG photometry of both stars and quasars reveals the need to apply a color and magnitude recalibration to the PG data. Using the SDSS photometric catalog, we define the PGs parent sample of objects that are not main-sequence stars and simulate the selection of objects from this parent sample using the PG photometric criteria and errors. This simulation shows that the effective U-B cut in the PG survey is U-B < -0.71 (rather than the intended U-B < -0.44), implying a color-related incompleteness. As the color distribution of bright quasars peaks near U-B=-0.7 and the 2-sigma error in U-B is comparable to the full width of the color distribution of quasars, the color incompleteness of the BQS is approximately 50% and essentially random with respect to U-B color for z<0.5. There is, however, a bias against bright quasars at 0.5 < z < 1, which is induced by the color-redshift relation of quasars (although quasars at z>0.5 are inherently rare in bright surveys in any case). We find no evidence for any other systematic incompleteness when comparing the distributions in color, redshift, and FIRST radio properties of the BQS and a BQS-like subsample of the SDSS quasar sample. However, the application of a bright magnitude limit biases the BQS toward the inclusion of objects which are blue in g-i, in particular compared to the full range of g-i colors found among the i-band limited SDSS quasars, and even at i-band magnitudes comparable to those of the BQS objects.
The source catalogue for the LBQS and the FIRST Survey are compared in their regions of overlap. In the 270 deg^2 common to both surveys the LBQS contains ~100,000 stellar and ~40,000 non-stellar objects, while the FIRST catalogue contains ~25,000 so urces. Cross-correlation of these lists yields 67 positional coincidences between known LBQS quasars and FIRST sources and an additional 19 stellar and 149 non-stellar positional coincidences with the radio catalogue. Spectroscopy of all the stellar matches and two-thirds of the non-stellar matches produces eight new quasars. One BL Lac object, previously misclassified during the LBQS survey is also identified. The straightforward fractional incompleteness of the LBQS determined from this sample is 13+/-4%, in good agreement with the published estimate of 10%. The distributions of the ratio of radio-to-optical power, apparent magnitude and spectroscopic properties for the new objects are consistent with those of the 67 LBQS-FIRST objects previously known. The consistency of the optical and radio properties of the new objects with those of the known quasars thus supports the conclusion that no new population of objects, constituting more than ~7% of quasars detected by FIRST, has eluded the LBQS optical selection techniques. The percentage of radio-detected quasars in the LBQS catalogue is found to be 12+/-2%, considerably smaller than the value of 25% advocated by White et al. (2000) based on the FBQS. Apparent differences in the form of the number-redshift relation for the LBQS and FBQS samples are shown to arise in large part from the very different optical passbands employed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا