ﻻ يوجد ملخص باللغة العربية
We present a gauge-invariant formalism to study the evolution of curvature perturbations in a Friedmann-Robertson-Walker universe filled by multiple interacting fluids. We resolve arbitrary perturbations into adiabatic and entropy components and derive their coupled evolution equations. We demonstrate that perturbations obeying a generalised adiabatic condition remain adiabatic in the large-scale limit, even when one includes energy transfer between fluids. As a specific application we study the recently proposed curvaton model, in which the curvaton decays into radiation. We use the coupled evolution equations to show how an initial isocurvature perturbation in the curvaton gives rise to an adiabatic curvature perturbation after the curvaton decays.
The large-scale dynamics of a two-fluid system with a time dependent interaction is studied analytically and numerically. We show how a rapid transition can significantly suppress the large-scale curvature perturbation and present approximative formu
We present a systematic exploration of dark energy and modified gravity models containing a single scalar field non-minimally coupled to the metric. Even though the parameter space is large, by exploiting an effective field theory (EFT) formulation a
In this Letter, we describe how a spectrum of entropic perturbations generated during a period of slow contraction can source a nearly scale-invariant spectrum of curvature perturbations on length scales larger than the Hubble radius during the trans
We consider an interacting field theory model that describes the interaction between dark energy - dark matter interaction. Only for a specific interaction term, this interacting field theory description has an equivalent interacting fluid descriptio
The delta N formula for the primordial curvature perturbation zeta is extended to include vector as well as scalar fields. Formulas for the tree-level contributions to the spectrum and bispectrum of zeta are given, exhibiting statistical anisotropy.