ترغب بنشر مسار تعليمي؟ اضغط هنا

Chandra X-Ray Observatory observations of the globular cluster M28 and its millisecond pulsar B1821-24

73   0   0.0 ( 0 )
 نشر من قبل Martin C. Weisskopf
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report here the results of the first Chandra X-Ray Observatory observations of the globular cluster M28 (NGC 6626). 46 X-ray sources are detected, of which 12 lie within one core radius of the center. We show that the apparently extended X-ray core emission seen with the ROSAT HRI is due to the superposition of multiple discrete sources for which we determine the X-ray luminosity function down to a limit of about 6xE30 erg/s. For the first time the unconfused phase-averaged X-ray spectrum of the 3.05-ms pulsar B1821--24 is measured and found to be best described by a power law with photon index ~ 1.2. Marginal evidence of an emission line centered at 3.3 keV in the pulsar spectrum is found, which could be interpreted as cyclotron emission from a corona above the pulsars polar cap if the the magnetic field is strongly different from a centered dipole. The unabsorbed pulsar flux in the 0.5--8.0 keV band is ~3.5xE-13 ergs/s/cm^2. Spectral analysis of the 5 brightest unidentified sources is presented. Based on the spectral parameters of the brightest of these sources, we suggest that it is a transiently accreting neutron star in a low-mass X-ray binary, in quiescence. Fitting its spectrum with a hydrogen neutron star atmosphere model yields the effective temperature T_eff^infty = 90^{+30}_{-10} eV and the radius R_NS^infty = 14.5^{+6.9}_{-3.8} km. In addition to the resolved sources, we detect fainter, unresolved X-ray emission from the central core of M28. Using the Chandra-derived positions, we also report on the result of searching archival Hubble Space Telescope data for possible optical counterparts.

قيم البحث

اقرأ أيضاً

171 - Ismael Cognard 2004
We report on the observation of a very small glitch observed for the first time in a millisecond pulsar, PSR B1821-24 located in the globular cluster M28. Timing observations were mainly conducted with the Nancay radiotelescope (France) and confirmat ion comes from the 140ft radiotelescope at Green Bank and the new Green Bank Telescope data. This event is characterized by a rotation frequency step of 3 nHz, or 10^-11 in fractional frequency change along with a short duration limited to a few days or a week. A marginally significant frequency derivative step was also found. This glitch follows the main characteristics of those in the slow period pulsars, but is two orders of magnitude smaller than the smallest ever recorded. Such an event must be very rare for millisecond pulsars since no other glitches have been detected when the cumulated number of years of millisecond pulsar timing observations up to 2001 is around 500 for all these objects. However, pulsar PSR B1821-24 is one of the youngest among the old recycled ones and there is likely a correlation between age, or a related parameter, and timing noise. While this event happens on a much smaller scale, the required adjustment of the star to a new equilibrium figure as it spins down is a likely common cause for all glitches.
We observed the nearby, low-density globular cluster M71 (NGC 6838) with the Chandra X-ray Observatory to study its faint X-ray populations. Five X-ray sources were found inside the cluster core radius, including the known eclipsing binary millisecon d pulsar (MSP) PSR J1953+1846A. The X-ray light curve of the source coincident with this MSP shows marginal evidence for periodicity at the binary period of 4.2 h. Its hard X-ray spectrum and luminosity resemble those of other eclipsing binary MSPs in 47 Tuc, suggesting a similar shock origin of the X-ray emission. A further 24 X-ray sources were found within the half-mass radius, reaching to a limiting luminosity of 1.5 10^30 erg/s (0.3-8 keV). From a radial distribution analysis, we find that 18+/-6 of these 29 sources are associated with M71, somewhat more than predicted, and that 11+/-6 are background sources, both galactic and extragalactic. M71 appears to have more X-ray sources between L_X=10^30--10^31 erg/s than expected by extrapolating from other studied clusters using either mass or collision frequency. We explore the spectra and variability of these sources, and describe the results of ground-based optical counterpart searches.
We present an analysis of 745.6 ks of archival Chandra X-ray Observatory Advanced CCD Imaging Spectrometer data accumulated between 2000 and 2016 of the millisecond pulsar (MSP) population in the rich Galactic globular cluster Terzan 5. Eight of the 37 MSPs with precise positions are found to have plausible X-ray source matches. Despite the deep exposure, the remaining MSPs are either marginally detected or have no obvious X-ray counterparts, which can be attributed to the typically soft thermal spectra of rotation-powered MSPs, which are strongly attenuated by the high intervening absorbing column (~$10^{22}$ cm$^{-2}$) towards the cluster, and in some instances severe source crowding/blending. For the redback MSP binaries, PSRs J1748-2446P and J1748-2446ad, and the black widow binary PSRs J1748-2446O, we find clear evidence for large-amplitude X-ray variability at the orbital period consistent with an intrabinary shock origin. The third redback MSP in the cluster, PSR J1748-2446A, shows large amplitude variations in flux on time scales of years, possibility due to state transitions or intense flaring episodes from the secondary star.
87 - T.Mineo , G.Cusumano , E.Massaro 2004
We report results on the timing and spectral analysis of observations of the millisecond pulsar PSR B1821-24 with RXTE, BeppoSAX and Chandra. The X-ray light curve is characterized by two narrow peaks at a phase distance of 0.452+/-0.002. The average pulsed emission, over the range 1.6-20 keV, is well represented by a single power law with a photon index alpha=1.30 +0.05 -0.02 and unabsorbed (2-10 keV) pulsed X-ray flux of 3.9x10^(-13) erg cm^(-2) s^(-1). We searched for a possible bunching of X-ray photons to verify if the X ray emission has a time structure similar to that of giant pulses and found a negative result.
We report a 5.4sigma detection of pulsed gamma rays from PSR B1821-24 in the globular cluster M28 using ~44 months of Fermi Large Area Telescope (LAT) data that have been reprocessed with improved instrument calibration constants. We constructed a ph ase-coherent ephemeris, with post-fit residual RMS of 3 mu s, using radio data spanning ~23.2 years, enabling measurements of the multi-wavelength light curve properties of PSR B1821-24 at the milliperiod level. We fold RXTE observations of PSR B1821-24 from 1996 to 2007 and discuss implications on the emission zones. The gamma-ray light curve consists of two peaks, separated by 0.41$pm$0.02 in phase, with the first gamma-ray peak lagging the first radio peak by 0.05$pm$0.02 in phase, consistent with the phase of giant radio pulses. We observe significant emission in the off-peak interval of PSR B1821-24 with a best-fit LAT position inconsistent with the core of M28. We do not detect significant gamma-ray pulsations at the spin or orbital periods from any other known pulsar in M28, and we place limits on the number of energetic pulsars in the cluster. The derived gamma-ray efficiency, ~2%, is typical of other gamma-ray pulsars with comparable spin-down power, suggesting that the measured spin-down rate ($2.2times10^{36}$ erg s$^{-1}$) is not appreciably distorted by acceleration in the cluster potential. This confirms PSR B1821-24 as the second very energetic millisecond pulsar in a globular cluster and raises the question of whether these represent a separate class of objects that only form in regions of very high stellar density
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا