ﻻ يوجد ملخص باللغة العربية
We present photometric and high- and low-resolution spectroscopic observations of the unusual outburst of V838 Mon. The data were collected at the NAO Rozhen, Bulgaria and at the Torun Observatory, Poland. Analysis of the peculiar behavior of the spectrum of the star is given. The stars radial velocity of +60 km/s is derived. A brief discussion concerning the nature of the object is also given.
The unusual eruptive variable discovered in Monoceros in 2002 January underwent dramatic photometric and spectroscopic changes in the months prior to its 2002 June-August conjunction with the Sun. Optical and infrared (IR) photometry obtained at the
We present spectroscopic and photometric observations of the recent peculiar outburst of V838 Mon, carried out at Rozhen and Torun observatories. Our data cover a period of three months beginning just before the second eruption. The evolution of the
We present the results of modelling the 0.45--1 micron spectral energy distribution of V838 Mon for 2002 November. Synthetic spectra were calculated using the NextGen model atmospheres of Hauschildt et al. (1999), which incorporate line lists for H2O
Extensive optical and infrared photometry as well as low and high resolution spectroscopy are used as inputs in deriving robust estimates of the reddening, distance and nature of the progenitor of V838 Mon. The reddening is found to obey the R_V=3.1
Aims. V838 Monocerotis erupted in 2002, brightened in a series of outbursts, and eventually developed a spectacular light echo. A very red star emerged a few months after the outburst. The whole event has been interpreted as the result of a merger. M