ترغب بنشر مسار تعليمي؟ اضغط هنا

A search for the radio counterpart of the unidentified gamma-ray source 3EG J1410-6147

63   0   0.0 ( 0 )
 نشر من قبل Michelle Doherty
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have made radio continuum, HI and X-ray observations in the direction of the unidentified EGRET source 3EG J1410-6147, using the Australia Telescope Compact Array and the Chandra X-ray Observatory. The observations encompass the supernova remnant (SNR) G312.4-0.4 and the two young pulsars PSRs J1412-6145 and J1413-6141. We derive a lower distance limit of 6 kpc to the SNR, although interpretation of positive velocity features in the HI spectrum may imply the SNR is more distant than 14 kpc. PSR J1412-6145, with an age of 50 kyr, is the pulsar most likely associated with SNR G312.4-0.4. X-rays are not detected from either pulsar and diffuse X-ray emission near the bright western edge of the SNR is weak. Although there is circumstantial evidence that this western region is a pulsar wind nebula (PWN), the embedded pulsar PSR J1412-6145 is apparently not sufficiently powerful to explain the radio enhancement. The origin of the electron acceleration in this region and of the gamma-rays remain unidentified, unless the distance to PSR J1413-6141 is at least a factor of 3 lower than its dispersion measure distance.



قيم البحث

اقرأ أيضاً

The EGRET telescope has repeatedly observed 3EG J1835+5918 as a bright and steady source of high-energy gamma-ray radiation which has not yet been indentified. EGRET data from CGRO observation cycle 1 to 7 have been reanalysed above 100 MeV and above 1 GeV. The gamma-ray source location represents the latest and probably final positional assessment based on EGRET data. We especially adress the question of flux variability and spectral variability. The results of a X-ray/optical identification campaign towards 3EG J1835+5918 are given. The one object which might be associated with the gamma-ray source 3EG J1835+5918 has the characteristics of an isolated neutron star and possible of a radio-quiet pulsar.
The nature of the gamma-ray source HESS J1507-622 that is located significantly off-set from the Galactic plane is not ascertained to date. Identifying the environment of an enigmatic object may help to constrain its nature. The path of the line of s ight of HESS J1507-622 through the Galaxy is compared to the characteristic length scales of stellar populations of different ages. Furthermore, for this object, the energy density in particles is contrasted to the magnetic field energy density and constraints on the distance based on equipartition between these two components are calculated. The line of sight of HESS J1507-622 reaches a minimum distance to the Galactic center at around a galactocentric distance of 5.3 kpc at about 300 pc off the Galactic disc. This location coincides with the scale length and width of stars with an age of 1.2 Gyr which could in principle be an indication that HESS J1507-622 is connected to a stellar population of similar age. For such a case the source appears to be strongly particle dominated. In a leptonic scenario, if a magnetic field in the source of 1 $mu$G is assumed, equipartition between magnetic field and particles would be realized at a distance of >1 Mpc. This could indicate an extragalactic origin of this object. However, an extragalactic origin is challenged by the extension of the source. The environment of HESS J1507-622 still remains elusive. For the case where this source belongs to a new class of gamma-ray emitters, the distribution of related objects (if existing) may help to settle the respective environment and distance scale.
We present the AGILE gamma-ray observations of the field containing the puzzling gamma-ray source 3EG J1835+5918. This source is one of the most remarkable unidentified EGRET sources. An unprecedentedly long AGILE monitoring of this source yields imp ortant information on the positional error box, flux evolution, and spectrum. 3EG J1835+5918 has been in the AGILE field of view several times in 2007 and 2008 for a total observing time of 138 days from 2007 Sept 04 to 2008 June 30 encompassing several weeks of continuous coverage. With an exposure time approximately twice that of EGRET, AGILE confirms the existence of a prominent gamma-ray source (AGL J1836+5926) at a position consistent with that of EGRET, although with a remarkably lower average flux value for photon energies greater than 100 MeV. A 5-day bin temporal analysis of the whole data set of AGL J1836+5926 shows some evidence for variability of the gamma-ray flux. The source spectrum between 100 MeV and 1 GeV can be fitted with a power law with photon index in the range 1.6-1.7, fully consistent with the EGRET value. The faint X-ray source RX J1836.2+5925 that has been proposed as a possible counterpart of 3EG J1835+5918 is well within the AGILE error box. Future continuous monitoring (both by AGILE and GLAST) is needed to confirm the gamma-ray flux variability and to unveil the source origin, a subject that is currently being pursued through a multiwavelength search for counterparts.
Aims. We aim here to contribute to the identification of unassociated bright sources of gamma-rays in the recently released catalogue obtained by the Fermi collaboration. Methods. Our work is based on a extensive cross-identification of sources fro m different wavelength catalogues and databases. Results. As a first result, we report the finding of a few counterpart candidates inside the 95% confidence error box of the Fermi LAT unidentified gamma-ray source 0FGL J1848.6$-$0138. The globular cluster GLIMPSE-C01 remarkably stands out among the most peculiar objects consistent with the position uncertainty of the gamma-ray source and with a conceivable physical scenario for gamma-ray production. The Fermi observed spectrum is compared against theoretical predictions in the literature making the association plausible but not yet certain due to its low X-ray to gamma-ray luminosity ratio. Other competing counterparts are also discussed. In particular, we pay a special attention to a possible Pulsar Wind Nebula inside the Fermi error box whose nature is yet to be confirmed. Conclusions.Both a globular cluster and an infrared source resembling a Pulsar Wind Nebula have been found in positional agreement with 0FGL J1848.6$-$0138. In addition, other interesting objects in the field are also reported. Future gamma-ray observations will narrow the position uncertainty and we hope to eventually confirm one of the counterpart candidates reported here. If GLIMPSE-C01 is confirmed, together with the Fermi possible detection of the well known globular cluster 47 Tuc, then it would provide strong support to theoretical predictions of globular clusters as gamma-ray sources.
The nature of the first unidentified VHE gamma-ray source with significant angular offset from the Galactic plane of 3.5 degrees, HESS J1507-622, is explored. Fermi-LAT data in the high-energy (HE, 100 MeV < E < 100 GeV) gamma-ray range collected ove r 34 month are used to describe the spectral energy distribution (SED) of the source. HESS J1507-622 is detected in the Fermi energy range and its spectrum is best described by a power law in energy with Gamma=1.7 +/- 0.1 stat +/- 0.2_sys and integral flux between (0.3-300) GeV of F = (2.0 +/-0.5_stat +/- 1.0_sys) x 10^-9 cm^-2 s^-1. With the available data it is not possible to discriminate between a hadronic and a leptonic scenario for HESS J1507-622. The location and compactness of the source indicate a considerable physical offset from the Galactic plane for this object. In case of a multiple-kpc distance, this challenges a pulsar wind nebula (PWN) origin for HESS J1507-622 since the time of travel for a pulsar born in the Galactic disk to reach such a location would exceed the inverse Compton (IC) cooling time of electrons that are energetic enough to produce VHE gamma-rays. However, an origin of this gamma-ray source connected to a pulsar that was born off the Galactic plane in the explosion of a hypervelocity star cannot be excluded. The nature of HESS J1507-622 is still unknown to date, and a PWN scenario cannot be ruled out in general. On the contrary HESS J1507-622 could be the first discovered representative of a population of spatially extended VHE gamma-ray emitters with HE gamma-ray counterpart that are located at considerable offsets from the Galactic plane. Future surveys in the VHE gamma-ray range are necessary to probe the presence or absence of such a source population.(abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا