ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton observations of ULIRGs I: A Compton-thick AGN in IRAS19254-7245

100   0   0.0 ( 0 )
 نشر من قبل Roberto Della Ceca
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the XMM-Newton observation of the merging system IRAS 19254-7245, also known as The Superantennae, whose southern nucleus is classified as a Seyfert 2 galaxy. The XMM-Newton data have allowed us to perform a detailed X-ray imaging and spectral analysis of this system. We clearly detect, for the first time in this system, a strong EW ~ 1.4 keV Fe emission line at 6.49+/-0.1 keV (rest-frame). The X-ray spectrum requires a soft thermal component (kT~0.9 keV; L(0.5-2) ~ 4E41 cgs), likely associated with the starburst, and a hard power-law continuum above 2 keV (observed L(2-10) ~ 4E42 cgs). We confirm the flatness of this latter component, already noted in previous ASCA data. This flatness, together with the detection of the strong Fe-Kalpha line and other broad band indicators, suggest the presence of a Compton-thick AGN with intrinsic luminosity > 1E44 cgs. We show that a Compton-thick model can perfectly reproduce the X-ray spectral properties of this object.



قيم البحث

اقرأ أيضاً

Heavily obscured, Compton Thick (CT, NH>10^24 cm^-2) AGN may represent an important phase in AGN/galaxy co-evolution and are expected to provide a significant contribution to the cosmic X-ray background (CXB). Through direct X-ray spectra analysis, w e selected 39 heavily obscured AGN (NH>3x10^23 cm^-2) in the 2 deg^2 XMM-COSMOS survey. After selecting CT AGN based on the fit of a simple absorbed two power law model to the XMM data, the presence of CT AGN was confirmed in 80% of the sources using deeper Chandra data and more complex models. The final sample of CT AGN comprises 10 sources spanning a large range of redshift and luminosity. We collected the multi-wavelength information available for all these sources, in order to study the distribution of SMBH and host properties, such as BH mass (M_BH), Eddington ratio (lambda_Edd), stellar mass (M*), specific star formation rate (sSFR) in comparison with a sample of unobscured AGN. We find that highly obscured sources tend to have significantly smaller M_BH and higher lambda_edd with respect to unobscured ones, while a weaker evolution in M* is observed. The sSFR of highly obscured sources is consistent with the one observed in the main sequence of star forming galaxies, at all redshift. We also present optical spectra, spectral energy distribution (SED) and morphology for the sample of 10 CT AGN: all the available optical spectra are dominated by the stellar component of the host galaxy, and a highly obscured torus component is needed in the SED of the CT sources. Exploiting the high resolution Hubble-ACS images available, we conclude that these highly obscured sources have a significantly larger merger fraction with respect to other X-ray selected samples of AGN. Finally we discuss implications in the context of AGN/galaxy co-evolutionary models, and compare our results with the predictions of CXB synthesis models.
We discuss here a long Suzaku observation of IRAS 19254-7245 (also known as the Superantennae), one of the brightest and well studied Ultra Luminous Infrared Galaxies in the local Universe. This long observation provided the first detection of IRAS 1 9254-7245 above 10 keV, and measured a 15-30 keV flux of ~5x10^(-12) erg cm^-2 s^-1. The detection above 10 keV has allowed us to unveil, for the first time, the intrinsic luminosity of the AGN hosted in IRAS 19254-7245, which is strongly absorbed (Nh ~ 3x10^(24) cm^-2) and has an intrinsic luminosity in the QSO regime (L(2-10 keV) ~ 3 x 10^(44) erg s^-1). The 2-10 keV spectrum of IRAS 19254-7245 is remarkably hard (Gamma~1.2), and presents a strong iron line (EW ~0.7 keV), clearly suggesting that below 10 keV we are seeing only reprocessed radiation. Since the energy of the Fe K emission is found to be at ~6.7 keV, consistent with He-like Fe, and its EW is too high to be explained in a starburst dominated scenario, we suggest that the 2--10 keV emission of IRAS 19254-7245 is dominated by reflection/scattering from highly ionized matter. Indeed, within this latter scenario we found that the photon index of the illuminating source is Gamma=1.87 (+0.11,-0.28), in excellent agreement with the mean value found for radio quiet unobscured AGN.
64 - B. J. Wilkes 2005
XMM-Newton spectra of five red, 2MASS AGN, selected from a sample observed by Chandra to be relatively X-ray bright and to cover a range of hardness ratios, confirm the presence of substantial absorbing material in three sources with optical classifi cations ranging from Type 1 to Type 2. A flat (hard), power law continuum is observed in the other two. The combination of X-ray absorption and broad optical emission lines suggests either a small (nuclear) absorber or a favored viewing angle so as to cover the X-ray source but not the broad emission line region (BELR). A soft excess is detected in all three Type 1 sources. We speculate that this may arise in an extended region of ionised gas, perhaps linked with the polarised (scattered) optical light present in these sources. The spectral complexity revealed by XMM-Newton emphasizes the limitations of the low S/N chandra data. The new results strengthen our earlier conclusions that the observed X-ray continua of red AGN are unusually hard at energies >2 keV. Their observed spectra are consistent with contributing significantly to the missing hard/absorbed population of the Cosmic X-ray Background (CXRB) although their intrinsic power law slopes are typical of broad-line (Type 1) AGN (Gamma ~1.7-1.9). This suggests that the missing X-ray-absorbed CXRB population may include Type 1 AGN/QSOs in addition to the Type 2 AGN generally assumed.
We present ROSAT HRI and ASCA observations of the well known ULIRG IRAS19254-7245 (the Superantennae). The object is not detected by ROSAT yielding a 3sigma upper limit of L_x ~8x10^{41} erg/s in the 0.1-2 keV band. However, we obtain a clear detecti on by ASCA yielding a luminosity in the 2-10 keV band of 2 times 10^{42}erg/s. Its X-ray spectrum is very hard, equivalent to a photon index of Gamma=1.0+-0.35. We therefore, attempt to model the X-ray data with a scatterer model in which the intrinsic X-ray emission along our line of sight is obscured by an absorbing screen while some fraction, f, is scattered into our line of sight by an ionized medium; this is the standard model for the X-ray emission in obscured (but non Compton-thick) Seyfert galaxies. We obtain an absorbing column of 2x10^{23}cm^{-2} for a power-law photon index of Gamma=1.9, an order of magnitude above the column estimated on the basis of optical observations; the percentage of the scattered emission is high (~20%). Alternatively, a model where most of the X-ray emission comes from reflection on a Compton thick torus (N_H>10^{24} cm^{-2}) cannot be ruled out. We do not detect an Fe line at 6.4 keV; however, the upper limit (90%) to the equivalent width of the 6.4 keV line is high (~3 keV). All the above suggest that most of the X-ray emission originates in an highly obscured Seyfert-2 nucleus.
The Chandra Deep Field is the region of the sky with the highest concentration of X-ray data available: 4Ms of Chandra and 3Ms of XMM data, allowing excellent quality spectra to be extracted even for faint sources. We take advantage of this in order to compile a sample of heavily obscured Active Galactic Nuclei (AGN) using X-ray spectroscopy. We select our sample among the 176 brightest XMM sources, searching for either a) flat X-ray spectra (Photon index<1.4 at the 90% confidence level) suggestive of a reflection dominated continuum or b) an absorption turn-over suggestive of a column density higher than ~10^{24} cm-2. We find a sample of nine candidate heavily obscured sources satisfying the above criteria. Four of these show statistically significant FeKalpha lines with large equivalent widths (three out of four have EW consistent with 1 keV) suggesting that these are the most secure Compton-thick AGN candidates. Two of these sources are transmission dominated while the other two are most probably reflection dominated Compton-thick AGN. Although this sample of four sources is by no means statistically complete, it represents the best example of Compton-thick sources found at moderate-to-high redshift with three sources at z=1.2-1.5 and one source at z=3.7. Using Spitzer and Herschel observations, we estimate with good accuracy the X-ray to mid-IR (12 micron) luminosity ratio of our sources. These are well below the average AGN relation, independently suggesting that these four sources are heavily obscured.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا