ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarization of photospheric lines from turbulent dynamo simulations

41   0   0.0 ( 0 )
 نشر من قبل J. Sanchez Almeida
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We employ the magnetic and velocity fields from turbulent dynamo simulations to synthesize the polarization of a typical photospheric line. The synthetic Stokes profiles have properties in common with those observed in the quiet Sun. The simulated magnetograms present a level of signal similar to that of the Inter-Network regions. Asymmetric Stokes V profiles with two, three and more lobes appear in a natural way. The intensity profiles are broadened by the magnetic fields in fair agreement with observational limits. Furthermore, the Hanle depolarization signals of the Sr I 4607 A line turn out to be within the solar values. Differences between synthetic and observed polarized spectra can also be found. There is a shortage of Stokes V asymmetries, that we attribute to a deficit of structuring in the magnetic and velocity fields from the simulations as compared to the Sun This deficit may reflect the fact that the Reynolds numbers of the numerical data are still far from solar values. We consider the possibility that intense and tangled magnetic fields, like those in the simulations, exist in the Sun. This scenario has several important consequences. For example, less than 10% of the existing unsigned magnetic flux would be detected in present magnetograms. The existing flux would exceed by far that carried by active regions during the maximum of the solar cycle. Detecting these magnetic fields would involve improving the angular resolution, the techniques to interpret the polarization signals, and to a less extent, the polarimetric sensitivity.


قيم البحث

اقرأ أيضاً

116 - Jorn Warnecke 2016
We investigate dynamo action in global compressible solar-like convective dynamos in the framework of mean-field theory. We simulate a solar-type star in a wedge-shaped spherical shell, where the interplay between convection and rotation self-consist ently drives a large-scale dynamo. To analyze the dynamo mechanism we apply the test-field method for azimuthally ($phi$) averaged fields to determine the 27 turbulent transport coefficients of the electromotive force, of which six are related to the $alpha$ tensor. This method has previously been used either in simulations in Cartesian coordinates or in the geodynamo context and is applied here for the first time to fully compressible simulations of solar-like dynamos. We find that the $phiphi$-component of the $alpha$ tensor does not follow the profile expected from that of kinetic helicity. The turbulent pumping velocities significantly alter the effective mean flows acting on the magnetic field and therefore challenge the flux transport dynamo concept. All coefficients are significantly affected by dynamically important magnetic fields. Quenching as well as enhancement are being observed. This leads to a modulation of the coefficients with the activity cycle. The temporal variations are found to be comparable to the time-averaged values and seem to be responsible for a nonlinear feedback on the magnetic field generation. Furthermore, we quantify the validity of the Parker-Yoshimura rule for the equatorward propagation of the mean magnetic field in the present case.
The ordered magnetic field observed via polarized synchrotron emission in nearby disc galaxies can be explained by a mean-field dynamo operating in the diffuse interstellar medium (ISM). Additionally, vertical-flux initial conditions are potentially able to influence this dynamo via the occurrence of the magneto-rotational instability (MRI). We aim to study the influence of various initial field configurations on the saturated state of the mean-field dynamo. This is motivated by the observation that different saturation behavior was previously obtained for different supernova rates. We perform direct numerical simulations (DNS) of three-dimensional local boxes of the vertically stratified, turbulent interstellar medium, employing shearing-periodic boundary conditions horizontally. Unlike in our previous work, we also impose a vertical seed magnetic field. We run the simulations until the growth of the magnetic energy becomes negligible. We furthermore perform simulations of equivalent 1D dynamo models, with an algebraic quenching mechanism for the dynamo coefficients. We compare the saturation of the magnetic field in the DNS with the algebraic quenching of a mean-field dynamo. The final magnetic field strength found in the direct simulation is in excellent agreement with a quenched $alphaOmega$~dynamo. For supernova rates representative of the Milky Way, field losses via a Galactic wind are likely responsible for saturation. We conclude that the relative strength of the turbulent and regular magnetic fields in spiral galaxies may depend on the galaxys star formation rate. We propose that a mean field approach with algebraic quenching may serve as a simple sub-grid scale model for galaxy evolution simulations including a prescribed feedback from magnetic fields.
Coherent magnetic fields in disc galaxies are thought to be generated by a large-scale (or mean-field) dynamo operating in their interstellar medium. A key driver of mean magnetic field growth is the turbulent electromotive force (EMF), which represe nts the influence of correlated small-scale (or fluctuating) velocity and magnetic fields on the mean field. The EMF is usually expressed as a linear expansion in the mean magnetic field and its derivatives, with the dynamo tensors as expansion coefficients. Here, we adopt the singular value decomposition (SVD) method to directly measure these turbulent transport coefficients in a simulation of the turbulent interstellar medium that realizes a large-scale dynamo. Specifically, the SVD is used to least-square fit the time series data of the EMF with that of the mean field and its derivatives, to determine these coefficients. We demonstrate that the spatial profiles of the EMF reconstructed from the SVD coefficients match well with that taken directly from the simulation. Also, as a direct test, we use the coefficients to simulate a 1-D mean-field dynamo model and find an overall similarity in the evolution of the mean magnetic field between the dynamo model and the direct simulation. We also compare the results with those which arise using simple regression and the ones obtained previously using the test-field (TF) method, to find reasonable qualitative agreement. Overall, the SVD method provides an effective post-processing tool to determine turbulent transport coefficients from simulations.
We present results from numerical simulations of nonlinear MHD dynamo action produced by three-dimensional flows that become turbulent for high values of the fluid Reynolds number. The magnitude of the forcing function driving the flow is allowed to evolve with time in such way as to maintain an approximately constant velocity amplitude (and average kinetic energy) when the flow becomes hydrodynamically unstable. It is found that the saturation level of the dynamo increases with the fluid Reynolds number (at constant magnetic Prandtl number), and that the average growth rate approaches an asymptotic value for high fluid Reynolds number. The generation and destruction of magnetic field is examined during the laminar and turbulent phase of the flow and it is found that in the neighborhood of strong magnetic flux cigars Joule dissipation is balanced by the work done against the Lorentz force, while the steady increase of magnetic energy occurs mainly through work done in the weak part of the magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا