ترغب بنشر مسار تعليمي؟ اضغط هنا

High energy neutrinos from magnetars

85   0   0.0 ( 0 )
 نشر من قبل Bing Zhang
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Bing Zhang




اسأل ChatGPT حول البحث

Magnetars can accelerate cosmic rays to high energies through the unipolar effect, and are also copious soft photon emitters. We show that young, fast-rotating magnetars whose spin and magnetic moment point in opposite directions emit high energy neutrinos from their polar caps through photomeson interactions. We identify a neutrino cut-off band in the magnetar period-magnetic field strength phase diagram, corresponding to the photomeson interaction threshold. Within uncertainties, we point out four possible neutrino emission candidates among the currently known magnetars, the brightest of which may be detectable for a chance on-beam alignment. Young magnetars in the universe would also contribute to a weak diffuse neutrino background, whose detectability is marginal, depending on the typical neutrino energy.

قيم البحث

اقرأ أيضاً

Magnetars are neutron stars with very strong magnetic fields on the order of $10^{13}$ to $10^{15}$ G. Young magnetars with oppositely-oriented magnetic fields and spin moments may emit high-energy (HE) neutrinos from their polar caps as they may be able to accelerate cosmic rays to above the photomeson threshold (Zhang et al. 2003). Giant flares of soft gamma-ray repeaters (a subclass of magnetars) may also produce HE neutrinos and therefore a HE neutrino flux from this class is potentially detectable (Ioka et al. 2005). Here we present plans to search for neutrino emission from magnetars listed in the McGill Online Magnetar Catalog using 10 years of well-reconstructed IceCube muon-neutrino events looking for significant clustering around magnetars direction. IceCube is a cubic kilometer neutrino observatory at the South Pole and has been fully operational for the past ten years.
The energy density of cosmic neutrinos measured by IceCube matches the one observed by Fermi in extragalactic photons that predominantly originate in blazars. This has inspired attempts to match Fermi sources with IceCube neutrinos. A spatial associa tion combined with a coincidence in time with a flaring source may represent a smoking gun for the origin of the IceCube flux. In June 2015, the Fermi Large Area Telescope observed an intense flare from blazar 3C 279 that exceeded the steady flux of the source by a factor of forty for the duration of a day. We show that IceCube is likely to observe neutrinos, if indeed hadronic in origin, in data that are still blinded at this time. We also discuss other opportunities for coincident observations that include a recent flare from blazar 1ES 1959+650 that previously produced an intriguing coincidence with AMANDA observations.
The standard perception is that the detection of high energy (TeV energies and above) neutrinos from an astrophysical object is a conclusive evidence for the presence of hadronic cosmic rays at the source. In the present work we demonstrate that TeV neutrinos can also be originated from energetic electrons via electromagnetic interactions in different potential cosmic ray sources with flux levels comparable to that of the hadronic originated neutrinos at high energies. Our findings thus imply that at least a part of the neutrinos observed by Icecube observatory may be originated from energetic electrons. The present analysis further suggests that only a combine study of TeV gamma rays and neutrinos over a wide energy range from an astrophysical object can unambiguously identify the nature of their parents, hadrons or leptons.
Neutrinos offer a window to physics beyond the Standard Model. In particular, high-energy astrophysical neutrinos, with TeV-PeV energies, may provide evidence of new, secret neutrino-neutrino interactions that are stronger than ordinary weak interact ions. During their propagation over cosmological distances, high-energy neutrinos could interact with the cosmic neutrino background via secret interactions, developing characteristic energy-dependent features in their observed energy distribution. For the first time, we look for signatures of secret neutrino interactions in the diffuse flux of high-energy astrophysical neutrinos, using 6 years of publicly available IceCube High Energy Starting Events (HESE). We find no significant evidence for secret neutrino interactions, but place competitive upper limits on the coupling strength of the new mediator through which they occur, in the mediator mass range of 1-100 MeV.
56 - G.F. Burgio 2004
The ANTARES project aims at the construction of a neutrino telescope 2500 m below the surface of the Mediterranean sea, close to the southern French coast. The apparatus will consist of a 3D array of photomultiplier tubes, which detects the Cherenkov light emitted by upward going neutrino-induced muons. High-energy neutrinos may be produced in powerful cosmic accelerators, such as, gamma-ray bursters, active galactic nuclei, supernova remnants, and microquasars. We have estimated the event rate in ANTARES of neutrinos coming from these sources, and particularly for a microquasar model, and found that for some of these sources the detection rate can be up to several events per year.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا