ترغب بنشر مسار تعليمي؟ اضغط هنا

The Crustal Rigidity of a Neutron Star, and Implications for PSR 1828-11 and other Precession Candidates

89   0   0.0 ( 0 )
 نشر من قبل Curt Cutler
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the crustal rigidity parameter, b, of a neutron star (NS), and show that b is a factor 40 smaller than the standard estimate due to Baym & Pines (1971). For a NS with a relaxed crust, the NSs free-precession frequency is directly proportional to b. We apply our result for b to PSR 1828-11, a 2.5 Hz pulsar that appears to be precessing with period 511 d. Assuming this 511-d period is set by crustal rigidity, we show that this NSs crust is not relaxed, and that its reference spin (roughly, the spin for which the crust is most relaxed) is 40 Hz, and that the average spindown strain in the crust is 5 times 10^{-5}. We also briefly describe the implications of our b calculation for other well-known precession candidates.

قيم البحث

اقرأ أيضاً

104 - Taner Akgun 2005
Stairs, Lyne & Shemar have found that arrival time residuals from PSR B1828-11 vary periodically with a period of 500 days. This behavior can be accounted for by precession of the radiopulsar, an interpretation that is reinforced by the detection of variations in its pulse profile on the same timescale. Here, we model the period residuals from PSR B1828-11 in terms of precession of a triaxial rigid body. We include two contributions to the residuals: (i) the geometric effect, which arises because the times at which the pulsar emission beam points toward the observer varies with precession phase; (ii) the spindown contribution, which arises from any dependence of the spindown torque acting on the pulsar on the angle between its spin and magnetic axes. We use the data to probe numerous properties of the pulsar, most notably its shape, and the dependence of its spindown torque on the angle between its spin and magnetic axes, for which we assume a sum of a spin-aligned component (with a weight 1-a) and a dipolar component perpendicular to the magnetic beam axis (weight a), rather than the vacuum dipole torque (a=1). We find that a variety of shapes are consistent with the residuals, with a slight statistical preference for a prolate star. Moreover, a range of torque possibilities fit the data equally well, with no strong preference for the vacuum model. In the case of a prolate star we find evidence for an angle-dependent spindown torque. Our results show that the combination of geometrical and spin-down effects associated with precession can account for the principal features of PSR B1828-11s timing behavior, without fine tuning of the parameters.
155 - Anson Hook , Junwu Huang 2017
In certain models of a QCD axion, finite density corrections to the axion potential can result in the axion being sourced by large dense objects. There are a variety of ways to test this phenomenon, but perhaps the most surprising effect is that the axion can mediate forces between neutron stars that can be as strong as gravity. These forces can be attractive or repulsive and their presence can be detected by Advanced LIGO observations of neutron star inspirals. By a numerical coincidence, axion forces between neutron stars with gravitational strength naturally have an associated length scale of tens of kilometers or longer, similar to that of a neutron star. Future observations of neutron star mergers in Advanced LIGO can probe many orders of magnitude of axion parameter space. Because the axion is only sourced by large dense objects, the axion force evades fifth force constraints. We also outline several other ways to probe this phenomenon using electromagnetic signals associated with compact objects.
A millisecond pulsar having an ellipticity, that is an asymmetric mass distribution around its spin-axis, could emit continuous gravitational waves, which have not been detected so far. An indirect way to infer such waves is to estimate the contribut ion of the waves to the spin-down rate of the pulsar. The transitional pulsar PSR J1023+0038 is ideal and unique for this purpose, because this is the only millisecond pulsar for which the spin-down rate has been measured in both accreting and non-accreting states. Here we infer, from our formalism based on the complete torque budget equations and the pulsar magnetospheric origin of observed $gamma$-rays in the two states, that PSR J1023+0038 should emit gravitational waves due to a permanent ellipticity of the pulsar. The formalism also explains some other main observational aspects of this source in a self-consistent way. As an example, our formalism naturally infers the accretion disc penetration into the pulsar magnetosphere, and explains the observed X-ray pulsations in the accreting state using the standard and well-accepted scenario. This, in turn, infers the larger pulsar spin-down power in the accreting state, which, in our formalism, explains the observed larger $gamma$-ray emission in this state. Exploring wide ranges of parameter values of PSR J1023+0038, and not assuming an additional source of stellar ellipticity in the accreting state, we find the misaligned mass quadrupole moment of the pulsar in the range of $(0.92-1.88)times10^{36}$ g cm$^2$, implying an ellipticity range of $(0.48-0.93)times10^{-9}$.
The Neutron star Interior Composition Explorer (NICER) is currently observing the x-ray pulse profiles emitted by hot spots on the surface of rotating neutron stars allowing for an inference of their radii with unprecedented precision. A critical ing redient in the pulse profile model is an analytical formula for the oblate shape of the star. These formulas require a fitting over a large ensemble of neutron star solutions, which cover a wide set of equations of state, stellar compactnesses and rotational frequencies. However, this procedure introduces a source of systematic error, as (i) the fits do not describe perfectly the surface of all stars in the ensemble and (ii) neutron stars are described by a single equation of state, whose influence on the surface shape is averaged out during the fitting procedure. Here we perform a first study of this systematic error, finding evidence that it is subdominant relative to the statistical error in the radius inference by NICER. We also find evidence that the formula currently used by NICER can be used in the inference of the radii of rapidly rotating stars, outside of the formulas domain of validity. Moreover, we employ an accurate enthalpy-based method to locate the surface of numerical solutions of rapidly rotating neutron stars and a new highly accurate formula to describe their surfaces. These results can be used in applications that require an accurate description of oblate surfaces of rapidly rotating neutron stars.
307 - Chunglee Kim , Vicky Kalogera , 2006
We present the current estimates of the Galactic merger rate of double-neutron-star (DNS) systems. Using a statistical analysis method, we calculate the probability distribution function (PDF) of the rate estimates, which allows us to assign confiden ce intervals to the rate estimates. We calculate the Galactic DNS merger rate based on the three known systems B1913+16, B1534+12, and J0737-3039. The discovery of J0737-3039 increases the estimated DNS merger rate by a factor ~6 than what is previously known. The most likely values of DNS merger rate lie in the range 3-190 per Myr depending on different pulsar models. Motivated by a strong correlation between the peak rate estimates and a pulsar luminosity function, we calculate a global probability distribution as a single representation of the parameter space covered by different pulsar population models. We compare the global PDF with the observed supernova Ib/c rate, which sets an upper limit on the DNS merger rate. Finally, we remark on implications of new discoveries such as of J1756-2251, the 4th DNS in the Galactic disk, and J1906+0746, a possible DNS system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا