ﻻ يوجد ملخص باللغة العربية
The intensity of the strong N V 1240 line relative to C IV 1549 or to He II 1640 has been proposed as an indicator of the metallicity of QSO broad emission line regions, allowing abundance measurements in a large number of QSOs out to the highest redshifts. Previously, it had been shown that the (normally) much weaker lines N III] 1750 and N IV] 1486 could be used in the same way. The redshift 1.96 QSO 0353-383 has long been known to have N III] and N IV] lines that are far stronger relative to Ly-alpha or C IV than in any other QSO. Because in this particular case these intercombination lines can be easily measured, this unusual object provides an ideal opportunity for testing whether the N V line is a valid abundance indicator. Using new observations of Q0353-383 made both with HST in the ultraviolet and from the ground in the visible passband, we find that intensity ratios involving the strengths of N V, N IV] and N III] relative to lines of He, C and O all indicate that nitrogen is overabundant relative to oxygen in Q0353-383 by a factor of ~15 compared to solar ratios. This agreement among the diagnostics supports the use of these lines for measuring BLR chemical abundances. If nitrogen behaves like a secondary element, such that N/O is proportional to O/H, then the extreme nitrogen enhancement in Q0353-383 implies a metallicity of ~15 times the solar value. Even if Q0353-383 represents an extreme outlier in the N/O proportional to O/H relation, the overall metallicity should still be at least five times solar. Unusually high metallicities in Q0353-383 might imply that we caught this object just as the gas-phase metallicity in the central part of its host galaxy has peaked, at a time when the interstellar gas supply is nearly exhausted and hence the fuel source for the central QSO is ready to shut off.
We show that a cooled region of shocked supernova ejecta forms in a type II supernova-QSO wind interaction, and has a density, an ionization parameter, and a column density compatible with those inferred for the high ionization component of the broad
We measured the metallicity Z in the broad emission line regions (BELRs) of 43 SDSS quasars with the strongest N IV] and N III] emission lines. These N-Loud QSOs have unusually low black hole masses. We used the intensity ratio of N lines to collisio
We present a correlation between the presence of luminous extended emission-line regions (EELRs) and the metallicity of the broad-line regions (BLRs) of low-redshift quasars. The result is based on ground-based [O III] 5007 narrow-band imaging and Hu
We present a model which relates the width of the Broad Emission Lines of AGN to the Keplerian velocity of an accretion disk at a critical distance from the central black hole. This critical distance falls in a region bounded on the inward side by th
We present rest-frame optical spectra of 12 nitrogen-loud quasars at z ~ 2.2, whose rest-frame ultraviolet (UV) spectra show strong nitrogen broad emission lines. To investigate their narrow-line region (NLR) metallicities, we measure the equivalent