ترغب بنشر مسار تعليمي؟ اضغط هنا

Star Formation Rate estimators: [OII]3727 vs. Halpha for local star-forming galaxies

101   0   0.0 ( 0 )
 نشر من قبل Alfonso Aragon-Salamanca
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The [OII]3727 emission line is frequently used as an indicator of the star formation rate (SFR) despite its complex dependence on metallicity and excitation conditions. We have analysed the properties of the [OII] and Halpha emission lines for a complete sample of local Halpha-selected galaxies, the Universidad Complutense de Madrid (UCM) survey. We find a large scatter in the [OII]/Halpha line ratios, although the scatter in the extinction-corrected [OII]^0/Halpha^0 ratio is considerably smaller. We also find that the [OII]/Halpha ratios are reasonably well correlated with the absolute B- and K-band magnitudes and with EW([OII]). However, the extinction-corrected [OII]^0/Halpha^0 ratio is largely independent of these quantities, indicating that extinction is the main driver of the correlations. These correlations allow us to statistically predict--with varying degrees of accuracy--the observed and extinction-corrected Halpha fluxes from the observed [OII] flux using the information contained in EW([OII]) and/or the absolute magnitudes, but extreme caution is needed to make sure that the sample selection effects are correctly taken into account.

قيم البحث

اقرأ أيضاً

We use the data for the Hbeta emission-line, far-ultraviolet (FUV) and mid-infrared 22 micron continuum luminosities to estimate star formation rates <SFR> averaged over the galaxy lifetime for a sample of about 14000 bursting compact star-forming ga laxies (CSFGs) selected from the Data Release 12 (DR12) of the Sloan Digital Sky Survey (SDSS). The average coefficient linking <SFR> and the star formation rate SFR_0 derived from the Hbeta luminosity at zero starburst age is found to be 0.04. We compare <SFR>s with some commonly used SFRs which are derived adopting a continuous star formation during a period of ~100 Myr, and find that the latter ones are 2-3 times higher. It is shown that the relations between SFRs derived using a geometric mean of two star-formation indicators in the UV and IR ranges and reduced to zero starburst age have considerably lower dispersion compared to those with single star-formation indicators. We suggest that our relations for <SFR> determination are more appropriate for CSFGs because they take into account a proper temporal evolution of their luminosities. On the other hand, we show that commonly used SFR relations can be applied for approximate estimation within a factor of ~2 of the <SFR> averaged over the lifetime of the bursting compact galaxy.
We study the relations between gas-phase metallicity ($Z$), local stellar mass surface density ($Sigma_*$), and the local star formation surface density ($Sigma_{rm SFR}$) in a sample of 1120 star-forming galaxies from the MaNGA survey. At fixed $Sig ma_{*}$ the local metallicity increases as decreasing of $Sigma_{rm SFR}$ or vice versa for metallicity calibrators of N2 and O3N2. Alternatively, at fixed $Sigma_{rm SFR}$ metallicity increases as increasing of $Sigma_{*}$, but at high mass region, the trend is flatter. However, the dependence of metallicity on $Sigma_{rm SFR}$ is nearly disappeared for N2O2 and N2S2 calibrators. We investigate the local metallicity against $Sigma_{rm SFR}$ with different metallicity calibrators, and find negative/positive correlations depending on the choice of the calibrator. We demonstrate that the O32 ratio (or ionization parameter) is probably dependent on star formation rate at fixed local stellar mass surface density. Additional, the shape of $Sigma_*$ -- $Z$ -- $Sigma_{rm SFR}$ (FMR) depends on metallicity calibrator and stellar mass range. Since the large discrepancy between the empirical fitting-based (N2, O3N2) to electronic temperature metallicity and the photoionization model-dependent (N2O2, N2S2) metallicity calibrations, we conclude that the selection of metallicity calibration affects the existence of FMR on $Sigma_{rm SFR}$.
To compute the SFR of galaxies from the rest-frame UV it is essential to take into account the obscuration by dust. To do so, one of the most popular methods consists in combining the UV with the emission from the dust itself in the IR. Yet, differen t studies have derived different estimators, showing that no such hybrid estimator is truly universal. In this paper we aim at understanding and quantifying what physical processes drive the variations between different hybrid estimators. Doing so, we aim at deriving new universal UV+IR hybrid estimators to correct the UV for dust attenuation, taking into account the intrinsic physical properties of galaxies. We use the CIGALE code to model the spatially-resolved FUV to FIR SED of eight nearby star-forming galaxies drawn from the KINGFISH sample. This allows us to determine their local physical properties, and in particular their UV attenuation, average SFR, average specific SFR (sSFR), and their stellar mass. We then examine how hybrid estimators depend on said properties. We find that hybrid UV+IR estimators strongly depend on the stellar mass surface density (in particular at 70 and 100 micron) and on the sSFR (in particular at 24 micron and the TIR). Consequently, the IR scaling coefficients for UV obscuration can vary by almost an order of magnitude. This result contrasts with other groups who found relatively constant coefficients with small deviations. We exploit these variations to construct a new class of hybrid estimators based on observed UV to near-IR colours and near-IR luminosity densities per unit area. We find that they can reliably be extended to entire galaxies. The new estimators provide better estimates of attenuation-corrected UV emission than classical hybrid estimators. Naturally taking into account the variable impact of dust heated by old stellar populations, they constitute a step towards universal estimators.
(Abridged) The observational determination of the behaviour of the star formation rate (SFR) with look-back time or redshift has two main weaknesses: 1- the large uncertainty of the dust/extinction corrections, and 2- that systematic errors may be in troduced by the fact that the SFR is estimated using different methods at different redshifts. To assess the possible systematic differences among the different SFR estimators and the role of dust, we have compared SFR estimates using H$alpha$, SFR(H$alpha$), [OII]$lambda$3727AA, SFR(OII), UV, SFR(UV) and FIR, SFR(FIR) luminosities of a sample comprising the 31 nearby star forming galaxies having high quality photometric data in the UV, optical and FIR. We review the different standard methods for the estimation of the SFR and find that while the standard method provides good agreement between SFR(H$alpha$) and SFR(FIR), both SFR(OII) and SFR(UV) are systematically higher than SFR(FIR), irrespective of the extinction law. We show that the excess in the SFR(OII) and SFR(UV) is mainly due to an overestimate of the extinction resulting from the effect of underlying stellar Balmer absorptions in the measured emission line fluxes. Taking this effect into consideration in the determination of the extinction brings the SFR(OII) and SFR(UV) in line with the SFR(FIR) and simultaneously reduces the internal scatter of the SFR estimations. Based on these results we have derived unbiased SFR expressions for the SFR(UV), SFR(OII) and SFR(H$alpha$). We have used these estimators to recompute the SFR history of the Universe using the results of published surveys.
We present a photometric study of the Halpha emission in the Universidad Complutense de Madrid (UCM) Survey galaxies. This work complements our previously-published spectroscopic data. We study the location of the star-forming knots, their intensity, concentration, and the relationship of these properties with those of the host galaxy. We also estimate that the amount of Halpha emission that arises from the diffuse ionized gas is about 15-30% of the total Halpha flux for a typical UCM galaxy. This percentage seems to be independent of the Hubble type. Conversely, we found that an `average UCM galaxy harbours a star formation event with 30% of its Halpha luminosity arising from a nuclear component. The implications of these results for higher-redshift studies are discussed, including the effects of galaxy size and the depth of the observations. A correlation between the SFR and the Balmer decrement is observed, but such correlation breaks down for large values of the extinction. Finally, we recalculate the Halpha luminosity function and star formation rate density of the local Universe using the new imaging data. Our results point out that, on average, spectroscopic observations detected about one third of the total emission-line flux of a typical UCM galaxy. The new values obtained for the Halpha luminosity density and the star formation rate density of the local Universe are 10^(39.3+/-0.2) erg s-1 Mpc-3, and rho_SFR=0.016^(+0.007)_(-0.004) Mass_sun yr-1 Mpc-3 (H_0=50 km s-1 Mpc-1, Omega_M=1.0, Lambda=0). The corresponding values for the `concordance cosmology (H_0=70 km s-1 Mpc-1, Omega_M=0.3, Lambda=0.7) are 10^(39.5+/-0.2) erg s-1 Mpc-3 rho_SFR=0.029^(+0.008)_(-0.005) Mass_sun yr-1 Mpc-3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا