ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopy of Low Surface Brightness Galaxies with the Hobby-Eberly Telescope

171   0   0.0 ( 0 )
 نشر من قبل Marcel Bergmann
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have obtained low resolution spectra of nineteen red and blue low surface brightness galaxies, using the Marcario Low Resolution Spectrograph on the 9.2m Hobby-Eberly Telescope. These galaxies form a very heterogeneous class, whose spectra qualitatively resemble those of high surface brightness galaxies covering the full range of spectra seen in galaxies of Hubble types from E to Irr. We use a combination of emission line (EW(Halpha), NII/Halpha) and absorption line (Mgb, Hbeta, <Fe>) based diagnostics to investigate the star-formation and chemical enrichment histories of these galaxies. These are diverse, with some galaxies having low metallicity and very young mean stellar ages, and other galaxies showing old, super-solar metallicity stellar populations. In contrast with some previous studies which found a strong trend of decreasing metallicity with decreasing central surface brightness, we find a population of galaxies with low surface brightness and near-solar metallicity. Correlations between several of the gas phase and stellar population age and metallicity indicators are used to place contraints on plausible evolutionary scenarios for LSB galaxies. The redshift range spanned by these galaxies is broad, with radial velocities from 3400 km/s to more than 65000 km/s. A subset of the sample galaxies have published HI redshifts and gas masses based on observations with the Arecibo 305m single-dish radio telescope, which place these galaxies far off of the mean Tully-Fisher relation. Our new optical redshifts do not agree with the published HI redshifts for these galaxies. Most of the discrepancies can be explained by beam confusion in the Arecibo observations, causing erroneous HI detections for some of the galaxies.

قيم البحث

اقرأ أيضاً

The second generation Low Resolution Spectrograph (LRS2) is a new facility instrument for the Hobby-Eberly Telescope (HET). Based on the design of the Visible Integral-field Replicable Unit Spectrograph (VIRUS), which is the new flagship instrument f or carrying out the HET Dark Energy Experiment (HETDEX), LRS2 provides integral field spectroscopy for a seeing-limited field of 12 x 6 arcseconds. For LRS2, the replicable design of VIRUS has been leveraged to gain broad wavelength coverage from 370 nm to 1 micron, spread between two fiber-fed dual-channel spectrographs, each of which can operate as an independent instrument. The blue spectrograph, LRS2-B, covers 370-470 nm and 460-700 nm at fixed resolving powers of ~1900 and ~1100, respectively, while the red spectrograph, LRS2-R, covers 650-842 nm and 818-1050 nm with both of its channels having a resolving power of ~1800. In this paper, we present a detailed description of the instruments design in which we focus on the departures from the basic VIRUS framework. The primary modifications include the fore-optics that are used to feed the fiber integral field units at unity fill-factor, the cameras correcting optics and detectors, and the volume phase holographic grisms. We also present a model of the instruments sensitivity and a description of specific science cases that have driven the design of LRS2, including systematically studying the spatially resolved properties of extended Lyman-alpha blobs at 2 < z < 3. LRS2 will provide a powerful spectroscopic follow-up platform for large surveys such as HETDEX.
The upcoming Wide-Field Upgrade (WFU) has ushered in a new era of instrumentation for the Hobby-Eberly Telescope (HET). Here, we present the design, construction progress, and lab tests completed to date of the blue-optimized second generation Low Re solution Spectrograph (LRS2-B). LRS2-B is a dual-channel, fiber fed instrument that is based on the design of the Visible Integral Field Replicable Unit Spectrograph (VIRUS), which is the new flagship instrument for carrying out the HET Dark Energy eXperiment (HETDEX). LRS2-B utilizes a microlens-coupled integral field unit (IFU) that covers a 7x12 area on the sky having unity fill-factor with ~300 spatial elements that subsample the median HET image quality. The fiber feed assembly includes an optimized dichroic beam splitter that allows LRS2-B to simultaneously observe 370 nm to 470 nm and 460 nm to 700 nm at fixed resolving powers of R approx 1900 and 1200, respectively. We discuss the departures from the nominal VIRUS design, which includes the IFU, fiber feed, camera correcting optics, and volume phase holographic grisms. Additionally, the motivation for the selection of the wavelength coverage and spectral resolution of the two channels is briefly discussed. One such motivation is the follow-up study of spectrally and (or) spatially resolved Lyman-alpha emission from z ~ 2.5 star-forming galaxies in the HETDEX survey. LRS2-B is planned to be a commissioning instrument for the HET WFU and should be on-sky during quarter 4 of 2013. Finally, we mention the current state of LRS2-R, the red optimized sister instrument of LRS2-B.
Dwarf spheroidal galaxies (dSphs) are mostly investigated in the Local Group. DSphs are difficult targets for observations because of their small size and very low surface brightness. Here we measure spectroscopic and photometric parameters of three candidates for isolated dSphs, KKH65=BTS23, KK180, and KK227, outside the Local Group. The galaxies are found to be of low metallicity and low velocity dispersion. They are among the lowest surface brightness objects in the Local Universe. According to the measured radial velocities, metallicities, and structural and photometric parameters, KKH65 and KK227 are representatives of the ultra-diffuse quenched galaxies. KKH65 and KK227 belong to the outer parts of the groups NGC3414 and NGC5371, respectively. KK180 is located in the Virgo cluster infall region.
210 - G. J. Hill 2008
The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) will outfit the 10 m HET with a new wide field and an array of 150 integral-field spectrographs to survey a 420 sq. deg. area in the north Galactic cap. Each fiber-coupled unit spectrograph w ill cover 350-550 nm, simultaneously. This instrument, called VIRUS, will produce ~34,000 spectra per exposure, and will open up the emission-line universe to large surveys for the first time. The survey will detect 0.8 million Lyman-alpha emitting (LAE) galaxies with 1.9<z<3.5 and more than a million [OII] emitting galaxies with z<0.5. The 3-D map of LAE galaxies in 9 cubic Gpc volume will be used to measure the expansion history at this early epoch using baryonic acoustic oscillations and the shape of the power spectrum. The aim of HETDEX is to provide a direct detection of dark energy at z~3. The measurement will constrain the evolution of dark energy and will also provide 0.1%-level accuracy on the curvature of the Universe, ten times better than current. The prototype of the VIRUS unit spectrograph (VIRUS-P) is a powerful instrument in its own right. Used on the McDonald 2.7 m, it covers the largest area of any integral field spectrograph, and reaches wavelengths down to 340 nm. VIRUS-P is being used for a pilot survey to better measure the properties of LAE galaxies in support of HETDEX. We report initial results from this survey.
The Habitable zone Planet Finder (HPF) is a fiber fed precise radial velocity spectrograph at the 10 m Hobby Eberly Telescope (HET). Due to its fixed altitude design, the HET pupil changes appreciably across a track, leading to significant changes of the fiber far-field illumination. HPFs fiber scrambler is designed to suppress the impact of these illumination changes on the radial velocities -- but the residual impact on the radial velocity measurements has yet to be probed on sky. We use GJ 411, a bright early type (M2) M dwarf to probe the effects of far-field input trends due to these pupil variations on HPF radial velocities (RVs). These large changes ($sim$ 2x) in pupil area and centroid present a harsh test of HPFs far-field scrambling. Our results show that the RVs are effectively decoupled from these extreme far-field input changes due to pupil centroid offsets, attesting to the effectiveness of the scrambler design. This experiment allows us to test the impact of these changes with large pupil variation on-sky, something we would not easily be able to do at a conventional optical telescope. While the pupil and illumination changes expected at these other telescopes are small, scaling from our results enables us to estimate and bound these effects, and show that they are controllable even for the new and next generation of RV instruments in their quest to beat down instrumental noise sources towards the goal of a few cm/s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا