ترغب بنشر مسار تعليمي؟ اضغط هنا

Disk galaxy evolution: from the Milky Way to high-redshift disks

55   0   0.0 ( 0 )
 نشر من قبل Nikos Prantzos
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. Prantzos




اسأل ChatGPT حول البحث

We develop a detailed model of the Milky Way (a ``prototypical disk galaxy) and extend it to other disks with the help of some simple scaling relations, obtained in the framework of Cold Dark Matter models. This phenomenological (``hybrid) approach to the study of disk galaxy evolution allows us to reproduce successfully a large number of observed properties of disk galaxies in the local Universe and up to redshift z~1. The important conclusion is that, on average, massive disks have formed the bulk of their stars earlier than their lower mass counterparts: the ``star formation hierarchy has been apparently opposite to the ``dark matter assembly hierarchy. It is not yet clear whether ``feedback (as used in semi-analytical models of galaxy evolution) can explain that discrepancy.

قيم البحث

اقرأ أيضاً

We compare the star-formation history and dynamics of the Milky Way (MW) with the properties of distant disk galaxies. During the first ~4 Gyr of its evolution, the MW formed stars with a high star-formation intensity (SFI), Sigma_SFR~0.6 Msun/yr/kpc 2 and as a result, generated outflows and high turbulence in its interstellar medium. This intense phase of star formation corresponds to the formation of the thick disk. The formation of the thick disk is a crucial phase which enables the MW to have formed approximately half of its total stellar mass by z~1 which is similar to MW progenitor galaxies selected by abundance matching. This agreement suggests that the formation of the thick disk may be a generic evolutionary phase in disk galaxies. Using a simple energy injection-kinetic energy relationship between the 1-D velocity dispersion and SFI, we can reproduce the average perpendicular dispersion in stellar velocities of the MW with age. This relationship, its inferred evolution, and required efficiency are consistent with observations of galaxies from z~0-3. The high turbulence generated by intense star formation naturally resulted in a thick disk, a chemically well-mixed ISM, and is the mechanism that links the evolution of MW to the observed characteristics of distant disk galaxies.
89 - Xiangcheng Ma 2016
We study the structure, age and metallicity gradients, and dynamical evolution using a cosmological zoom-in simulation of a Milky Way-mass galaxy from the Feedback in Realistic Environments project. In the simulation, stars older than 6 Gyr were form ed in a chaotic, bursty mode and have the largest vertical scale heights (1.5-2.5 kpc) by z=0, while stars younger than 6 Gyr were formed in a relatively calm, stable disk. The vertical scale height increases with stellar age at all radii, because (1) stars that formed earlier were thicker at birth, and (2) stars were kinematically heated to an even thicker distribution after formation. Stars of the same age are thicker in the outer disk than in the inner disk (flaring). These lead to positive vertical age gradients and negative radial age gradients. The radial metallicity gradient is neg- ative at the mid-plane, flattens at larger disk height |Z|, and turns positive above |Z|~1.5kpc. The vertical metallicity gradient is negative at all radii, but is steeper at smaller radii. These trends broadly agree with observations in the Milky Way and can be naturally understood from the age gradients. The vertical stellar density profile can be well-described by two components, with scale heights 200-500 pc and 1-1.5 kpc, respectively. The thick component is a mix of stars older than 4 Gyr which formed through a combination of several mechanisms. Our results also demonstrate that it is possible to form a thin disk in cosmological simulations even with strong stellar feedback.
We present results from textsc{GigaEris}, a cosmological, $N$-body hydrodynamical ``zoom-in simulation of the formation of a Milky Way-sized galaxy with unprecedented resolution, encompassing of order a billion particles within the refined region. Th e simulation employs a modern implementation of smoothed-particle hydrodynamics, including metal-line cooling and metal and thermal diffusion. We focus on the early assembly of the galaxy, down to redshift $z=4.4$. The simulated galaxy has properties consistent with extrapolations of the main sequence of star-forming galaxies to higher redshifts and levels off to a star formation rate of $sim$60$, M_{odot}$yr$^{-1}$ at $z=4.4$. A compact, thin rotating stellar disk with properties analogous to those of low-redshift systems arises already at $z sim 8$-9. The galaxy rapidly develops a multi-component structure, and the disk, at least at these early stages, does not grow upside-down as often reported in the literature. Rather, at any given time, newly born stars contribute to sustain a thin disk, while the thick disk grows from stars that are primarily added through accretion and mergers. The kinematics reflect the early, ubiquitous presence of a thin disk, as a stellar disk component with $v_phi/sigma_R$ larger than unity is already present at $z sim 9$-10. Our results suggest that high-resolution spectro-photometric observations of very high-redshift galaxies should find thin rotating disks, consistent with the recent discovery of cold rotating gas disks by ALMA. Finally, we present synthetic images for the JWST NIRCam camera, showing how the early disk would be easily detectable already at $z sim 7$.
With the aim of determining if Milky Way (MW) progenitors could be identified as high redshift Lyman Alpha Emitters (LAEs) we have derived the intrinsic properties of z ~ 5.7 MW progenitors, which are then used to compute their observed Lyman-alpha l uminosity, L_alpha, and equivalent width, EW. MW progenitors visible as LAEs are selected according to the canonical observational criterion, L_alpha > 10^42 erg/s and EW > 20 A. Progenitors of MW-like galaxies have L_alpha = 10^(39-43.25) erg/s, making some of them visible as LAEs. In any single MW merger tree realization, typically only 1 (out of ~ 50) progenitor meets the LAE selection criterion, but the probability to have at least one LAE is very high, P = 68%. The identified LAE stars have ages, t_* ~ 150-400 Myr at z ~ 5.7 with the exception of five small progenitors with t_* < 5 Myr and large EW = 60-130 A. LAE MW progenitors provide > 10% of the halo very metal-poor stars [Fe/H] < -2, thus establishing a potentially fruitful link between high-z galaxies and the Local Universe.
We present a comprehensive study of the evolution of the abundances of intermediate mass elements, from C to Zn, in the Milky Way halo and in the local disk. We use a consistent model to describe the evolution of those two galactic subsystems. The ha lo and the disk are assumed to evolve independently, both starting with gas of primordial composition, and in different ways: strong outflow is assumed to take place during the $sim$1 Gyr of the halo formation, while the disk is built by slowly infalling gas. This description of the halo+disk evolution can correctly account for the main observational constraints (at least in the framework of simple models of galactic chemical evolution). We utilise then metallicity dependant yields to study the evolution of all elements from C and Zn. Comparing our results to an extensive body of observational data (including very recent ones), we are able to make a critical analysis of the successes and shortcomings of current yields of massive stars. Finally, we discuss qualitatively some possible ways to interpret the recent data on oxygen vs iron, which suggest that oxygen behaves differently from the other alpha-elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا