ترغب بنشر مسار تعليمي؟ اضغط هنا

Viscous diffusion and photoevaporation of stellar disks

71   0   0.0 ( 0 )
 نشر من قبل Isamu Matsuyama
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The evolution of a stellar disk under the influence of viscous evolution, photoevaporation from the central source, and photoevaporation by external stars is studied. We take the typical parameters of TTSs and the Trapezium Cluster conditions. The photoionizing flux from the central source is assumed to arise both from the quiescent star and accretion shocks at the base of stellar magnetospheric columns, along which material from the disk accretes. The accretion flux is calculated self-consistently from the accretion mass loss rate. We find that the disk cannot be entirely removed using only viscous evolution and photoionization from the disk-star accretion shock. However, when FUV photoevaporation by external massive stars is included the disk is removed in 10^6 -10^7yr; and when EUV photoevaporation by external massive stars is included the disk is removed in 10^5 - 10^6yr. An intriguing feature of photoevaporation by the central star is the formation of a gap in the disk at late stages of the disk evolution. As the gap starts forming, viscous spreading and photoevaporation work in resonance. There is no gap formation for disks nearby external massive stars because the outer annuli are quickly removed by the dominant EUV flux. On the other hand, at larger, more typical distances (d>>0.03pc) from the external stars the flux is FUV dominated. As a consequence, the disk is efficiently evaporated at two different locations; forming a gap during the last stages of the disk evolution.



قيم البحث

اقرأ أيضاً

We present HST/NICMOS Paschen alpha images and low and high resolution IRS spectra of photoevaporating disk-tail systems originally detected at 24 micron near O stars. We find no Paschen alpha emission in any of the systems. The resulting upper limit s correspond to about 0.000002-0.000003 solar mass of mass in hydrogen in the tails suggesting that the gas is severely depleted. The IRAC data and the low resolution 5-12 micron IRS spectra provide evidence for an inner disk while high resolution long wavelength (14-30 micron) IRS spectra confirm the presence of a gas free ``tail that consists of ~ 0.01 to ~ 1 micron dust grains originating in the outer parts of the circumstellar disks. Overall our observations support theoretical predictions in which photoevaporation removes the gas relatively quickly (<= 100000 yrs) from the outer region of a protoplanetary disk but leaves an inner more robust and possibly gas-rich disk component of radius 5-10 AU. With the gas gone, larger solid bodies in the outer disk can experience a high rate of collisions and produce elevated amounts of dust. This dust is being stripped from the system by the photon pressure of the O star to form a gas-free dusty tail.
The nature and rate of (viscous) angular momentum transport in protoplanetary discs (PPDs) has important consequences for the formation process of planetary systems. While accretion rates onto the central star yield constraints on such transport in t he inner regions of a PPD, empirical constraints on viscous spreading in the outer regions remain challenging to obtain. Here we demonstrate a novel method to probe the angular momentum transport at the outer edge of the disc. This method applies to PPDs that have lost a significant fraction of their mass due to thermal winds driven by UV irradiation from a neighbouring OB star. We demonstrate that this external photoevaporation can explain the observed depletion of discs in the 3-5 Myr old $sigma$ Orionis region, and use our model to make predictions motivating future empirical investigations of disc winds. For populations of intermediate-age PPDs, in viscous models we show that the mass flux outwards due to angular momentum redistribution is balanced by the mass-loss in the photoevaporative wind. A comparison between wind mass-loss and stellar accretion rates therefore offers an independent constraint on viscous models in the outer regions of PPDs.
Recent multi-wavelength observations suggest that inner parts of protoplanetary disks (PPDs) have shorter lifetimes for heavier host stars. Since PPDs around high-mass stars are irradiated by strong ultra-violet radiation, photoevaporation may provid e an explanation for the observed trend. We perform radiation hydrodynamics simulations of photoevaporation of PPDs for a wide range of host star mass of $M_* =0.5$-$7.0 M_{odot}$. We derive disk mass-loss rate $dot{M}$, which has strong stellar dependence as $dot{M} approx 7.30times10^{-9}(M_{*}/M_{odot})^{2}M_{odot}rm{yr}^{-1}$. The absolute value of $dot{M}$ scales with the adopted far-ultraviolet and X-ray luminosities. We derive the surface mass-loss rates and provide polynomial function fits to them. We also develop a semi-analytic model that well reproduces the derived mass-loss rates. The estimated inner disk lifetime decreases as the host star mass increases, in agreement with the observational trend. We thus argue that photoevaporation is a major physical mechanism for PPD dispersal for a wide range of the stellar mass and can account for the observed stellar mass dependence of the inner disk lifetime.
We present the time evolution of viscously accreting circumstellar disks as they are irradiated by ultraviolet and X-ray photons from a low-mass central star. Our model is a hybrid of a 1D time-dependent viscous disk model coupled to a 1+1D disk vert ical structure model used for calculating the disk structure and photoevaporation rates. We find that disks of initial mass 0.1M_o around 1M_o stars survive for 4x10^6 years, assuming a viscosity parameter $alpha=0.01$, a time-dependent FUV luminosity $L_{FUV}~10^{-2}-10^{-3}$ L_o and with X-ray and EUV luminosities $L_X sim L_{EUV} ~ 10^{-3}$L_o. We find that FUV/X-ray-induced photoevaporation and viscous accretion are both important in depleting disk mass. Photoevaporation rates are most significant at ~ 1-10 AU and at >~ 30 AU. Viscosity spreads the disk which causes mass loss by accretion onto the central star and feeds mass loss by photoevaporation in the outer disk. We find that FUV photons can create gaps in the inner, planet-forming regions of the disk (~ 1-10 AU) at relatively early epochs in disk evolution while disk masses are still substantial. EUV and X-ray photons are also capable of driving gaps, but EUV can only do so at late, low accretion-rate epochs after the disk mass has already declined substantially. Disks around stars with predominantly soft X-ray fields experience enhanced photoevaporative mass loss. We follow disk evolution around stars of different masses, and find that disk survival time is relatively independent of mass for stars with M <~ 3M_o; for M >~ 3M_o the disks are short-lived(~10^5 years).
Photoevaporation by stellar ionizing radiation is believed to play an important role in the dispersal of disks around young stars. The mass loss model for dust-free disks developed by Hollenbach et al. is currently regarded as a conventional one and has been used in a wide variety of studies. However, the rate in this model was derived by the crude so-called 1+1D approximation of ionizing radiation transfer, which assumes that diffuse radiation propagates in a direction vertical to the disk. In this study, we revisit the photoevaporation of dust-free disks by solving the 2D axisymmetric radiative transfer for steady-state disks. Unlike that solved by the conventional model, we determine that direct stellar radiation is more important than the diffuse field at the disk surface. The radial density distribution at the ionization boundary is represented by the single power-law with an index -3/2 in contrast to the conventional double power-law. For this distribution, the photoevaporation rate from the entire disk can be written as a function of the ionizing photon emissivity, Phi_EUV, from the central star and the disk outer radius, r_d, as follows: Mdot_PE = 5.4 x 10^-5 x (Phi_EUV/10^49 sec^-1)^1/2 x (r_d/1000 AU)^1/2 Msun/yr. This new rate depends on the outer disk radius rather than on the gravitational radius as in the conventional model, caused by the enhanced contribution to the mass loss from the outer disk annuli. In addition, we discuss its applications to present-day as well as primordial star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا