ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational Strategies of CMB Temperature and Polarization Interferometry Experiments

52   0   0.0 ( 0 )
 نشر من قبل Chan-Gyung Park
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Chan-Gyung Park




اسأل ChatGPT حول البحث

We have simulated the interferometric observation of the Cosmic Microwave Background (CMB) temperature and polarization fluctuations. We have constructed data pipelines from the time-ordered raw visibility samples to the CMB power spectra which utilize the methods of data compression, maximum likelihood analysis, and optimal subspace filtering. They are customized for three observational strategies, such as the single pointing, the mosaicking, and the drift-scanning. For each strategy, derived are the optimal strategy parameters that yield band power estimates with minimum uncertainty. The results are general and can be applied to any close-packed array on a single platform such as the CBI and the forthcoming AMiBA experiments. We have also studied the effect of rotation of the array platform on the band power correlation by simulating the CBI single pointing observation. It is found that the band power anti-correlations can be reduced by rotating the platform and thus densely sampling the visibility plane. This enables us to increase the resolution of the power spectrum in the l-space down to the limit of the sampling theorem (Delta l = 226 = pi / theta), which is narrower by a factor of about sqrt{2} than the resolution limit (Delta l = 300) used in the recent CBI single pointing observation. The validity of this idea is demonstrated for a two-element interferometer that samples visibilities uniformly in the uv-annulus. From the fact that the visibilities are the Fourier modes of the CMB field convolved with the beam, a fast unbiased estimator (FUE) of the CMB power spectra is developed and tested. It is shown that the FUE gives results very close to those from the quadratic estimator method without requiring large computer resources even though uncertainties in the results increase.


قيم البحث

اقرأ أيضاً

We present a first internal delensing of CMB maps, both in temperature and polarization, using the public foreground-cleaned (SMICA) Planck 2015 maps. After forming quadratic estimates of the lensing potential, we use the corresponding displacement f ield to undo the lensing on the same data. We build differences of the delensed spectra to the original data spectra specifically to look for delensing signatures. After taking into account reconstruction noise biases in the delensed spectra, we find an expected sharpening of the power spectrum acoustic peaks with a delensing efficiency of $29,%$ ($TT$) $25,%$ ($TE$) and $22,%$ ($EE$). The detection significance of the delensing effects is very high in all spectra: $12,sigma$ in $EE$ polarization; $18,sigma$ in $TE$; and $20,sigma$ in $TT$. The null hypothesis of no lensing in the maps is rejected at $26,sigma$. While direct detection of the power in lensing $B$-modes themselves is not possible at high significance at Planck noise levels, we do detect (at $4.5,sigma$ under the null hypothesis) delensing effects in the $B$-mode map, with $7,%$ reduction in lensing power. Our results provide a first demonstration of polarization delensing, and generally of internal CMB delensing, and stand in agreement with the baseline $Lambda$CDM Planck 2015 cosmology expectations.
We review the current status and future plans for polarization measurements of the cosmic microwave background radiation, as well as the cosmology these measurements will address. After a long period of increasingly sensitive upper limits, the DASI e xperiment has detected the E-mode polarization and both the DASI and WMAP experiments have detected the TE correlation. These detections provide confirmation of the standard model of adiabatic primordial density fluctuations consistent with inflationary models. The WMAP TE correlation on large angular scales provides direct evidence of significant reionization at higher redshifts than had previously been supposed. These detections mark the beginning of a new era in CMB measurements and the rich cosmology that can be gleaned from them.
We demonstrate that for a cosmic variance limited experiment, CMB E polarization alone places stronger constraints on cosmological parameters than CMB temperature. For example, we show that EE can constrain parameters better than TT by up to a factor 2.8 when a multipole range of l=30-2500 is considered. We expose the physical effects at play behind this remarkable result and study how it depends on the multipole range included in the analysis. In most relevant cases, TE or EE surpass the TT based cosmological constraints. This result is important as the small scale astrophysical foregrounds are expected to have a much reduced impact on polarization, thus opening the possibility of building cleaner and more stringent constraints of the LCDM model. This is relevant specially for proposed future CMB satellite missions, such as CORE or PRISM, that are designed to be cosmic variance limited in polarization till very large multipoles. We perform the same analysis for a Planck-like experiment, and conclude that even in this case TE alone should determine the constraint on $Omega_ch^2$ better than TT by 15%, while determining $Omega_bh^2$, $n_s$ and $theta$ with comparable accuracy. Finally, we explore a few classical extensions of the LCDM model and show again that CMB polarization alone provides more stringent constraints than CMB temperature in case of a cosmic variance limited experiment.
Madam is a CMB map-making code, designed to make temperature and polarization maps of time-ordered data of total power experiments like Planck. The algorithm is based on the destriping technique, but it also makes use of known noise properties in the form of a noise prior. The method in its early form was presented in an earlier work by Keihanen et al. (2005). In this paper we present an update of the method, extended to non-averaged data, and include polarization. In this method the baseline length is a freely adjustable parameter, and destriping can be performed at a different map resolution than that of the final maps. We show results obtained with simulated data. This study is related to Planck LFI activities.
We examine the use of the CMBs TE cross correlation power spectrum as a complementary test to detect primordial gravitational waves (PGWs). The first method used is based on the determination of the lowest multipole, $ell_0$, where the TE power spect rum, $C_{ell}^{TE}$, first changes sign. The second method uses Wiener filtering on the CMB TE data to remove the density perturbations contribution to the TE power spectrum. In principle this leaves only the contribution of PGWs. We examine two toy experiments (one ideal and another more realistic) to see their ability to constrain PGWs using the TE power spectrum alone. We found that an ideal experiment, one limited only by cosmic variance, can detect PGWs with a ratio of tensor to scalar metric perturbation power spectra $r=0.3$ at 99.9% confidence level using only the TE correlation. This value is comparable with current constraints obtained by WMAP based on the $2sigma$ upper limits to the B-mode amplitude. We demonstrate that to measure PGWs by their contribution to the TE cross correlation power spectrum in a realistic ground based experiment when real instrumental noise is taken into account, the tensor-to-scalar ratio, $r$, should be approximately three times larger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا