ﻻ يوجد ملخص باللغة العربية
We have simulated the interferometric observation of the Cosmic Microwave Background (CMB) temperature and polarization fluctuations. We have constructed data pipelines from the time-ordered raw visibility samples to the CMB power spectra which utilize the methods of data compression, maximum likelihood analysis, and optimal subspace filtering. They are customized for three observational strategies, such as the single pointing, the mosaicking, and the drift-scanning. For each strategy, derived are the optimal strategy parameters that yield band power estimates with minimum uncertainty. The results are general and can be applied to any close-packed array on a single platform such as the CBI and the forthcoming AMiBA experiments. We have also studied the effect of rotation of the array platform on the band power correlation by simulating the CBI single pointing observation. It is found that the band power anti-correlations can be reduced by rotating the platform and thus densely sampling the visibility plane. This enables us to increase the resolution of the power spectrum in the l-space down to the limit of the sampling theorem (Delta l = 226 = pi / theta), which is narrower by a factor of about sqrt{2} than the resolution limit (Delta l = 300) used in the recent CBI single pointing observation. The validity of this idea is demonstrated for a two-element interferometer that samples visibilities uniformly in the uv-annulus. From the fact that the visibilities are the Fourier modes of the CMB field convolved with the beam, a fast unbiased estimator (FUE) of the CMB power spectra is developed and tested. It is shown that the FUE gives results very close to those from the quadratic estimator method without requiring large computer resources even though uncertainties in the results increase.
We present a first internal delensing of CMB maps, both in temperature and polarization, using the public foreground-cleaned (SMICA) Planck 2015 maps. After forming quadratic estimates of the lensing potential, we use the corresponding displacement f
We review the current status and future plans for polarization measurements of the cosmic microwave background radiation, as well as the cosmology these measurements will address. After a long period of increasingly sensitive upper limits, the DASI e
We demonstrate that for a cosmic variance limited experiment, CMB E polarization alone places stronger constraints on cosmological parameters than CMB temperature. For example, we show that EE can constrain parameters better than TT by up to a factor
Madam is a CMB map-making code, designed to make temperature and polarization maps of time-ordered data of total power experiments like Planck. The algorithm is based on the destriping technique, but it also makes use of known noise properties in the
We examine the use of the CMBs TE cross correlation power spectrum as a complementary test to detect primordial gravitational waves (PGWs). The first method used is based on the determination of the lowest multipole, $ell_0$, where the TE power spect