ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-infrared imaging and the K-z relation for radio galaxies in the 7C Redshift Survey

38   0   0.0 ( 0 )
 نشر من قبل Chris J. Willott
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present K-band imaging of all 49 radio galaxies in the 7C-I and 7C-II regions of the 7C Redshift Survey (7CRS). The low-frequency (151 MHz) selected 7CRS sample contains all sources with flux-densities S_151 > 0.5 Jy in three regions of the sky. We combine the K-band magnitudes of the 7CRS radio galaxies with those from the 3CRR, 6CE and 6C* samples to investigate the nature of the relationship between K-magnitude and redshift and whether there is any dependence upon radio luminosity. We find that radio galaxies appear to belong to a homogeneous population which formed the bulk of their stars at high redshifts (z_f>5) and evolved passively from then until they reach a mean present-day luminosity of 3L*. We find a significant difference between the K-magnitudes of the 7CRS and 3CRR radio galaxies with the 7CRS galaxies being ~0.55 mag fainter at all redshifts. The cause of this weak correlation between stellar and radio luminosities probably lies in mutual correlations of these properties with the central black hole mass. We compare the evolution-corrected host luminosities at a constant radio luminosity and find that the typical host luminosity (mass) increases by approximately 1L* from z~2 to z~0.5 which, although a much smaller factor than predicted by semi-analytic models of galaxy formation, is in line with results on optically-selected quasars. Our study has therefore revealed that the small dispersion in stellar luminosity of radio galaxies around 3L* includes subtle but significant differences between the host galaxies of extreme- and moderate-power radio sources at fixed redshift, and between those of high- and low-redshift radio sources at fixed radio luminosity.

قيم البحث

اقرأ أيضاً

We present optical and/or near-IR images of 128 ultra steep spectrum (USS) radio sources. Roughly half of the objects are identified in the optical images (R <~ 24), while in the near-IR images, >94% are detected at K<~ 22. The mean K-magnitude is K= 19.26 within a 2 diameter aperture. The distribution of R-K colors indicates that at least 1/3 of the objects observed have very red colors (R-K>5). The major axes of the identifications in K-band are preferentially oriented along the radio axes, with half of them having compact morphologies. The 22 sources with spectroscopic redshifts and K-band magnitudes follow the K-z relation found from previous radio samples, but with a larger scatter. We argue that this may be due to a dependence of K-magnitude on the radio power, with the highest radio power sources inhabiting the most massive host galaxies. We present a composite K-z diagram of radio-loud and radio-quiet galaxies, selected from the HDF-North and the Hawaii surveys. Out to z <~ 1, the radio-loud galaxies trace the bright envelope of the radio quiet galaxies, while at z >~ 1, the radio-loud galaxies are >~ 2 magnitudes brighter. We argue that this is not due to a contribution from the AGN or emission lines. This difference strongly suggests that radio galaxies pinpoint the most massive systems out to the highest known redshifts, probably due to the mutual correlation of the mass of the galaxy and the radio power on the mass of the central black hole.
67 - Ivo Saviane 2008
(abridged) The present work is a first step to collect homogeneous abundances and near-infrared (NIR) luminosities for a sample of dwarf irregular (dIrr) galaxies, located in nearby groups. The use of NIR luminosities is intended to provide a better proxy to mass than the blue luminosities commonly used in the literature; in addition, selecting group members reduces the impact of uncertain distances. Accurate abundances are derived to assess the galaxy metallicity. Optical spectra are collected for Hii regions in the dIrrs, allowing the determination of oxygen abundances by means of the temperature-sensitive method. For each dIrr galaxy H-band imaging is performed and the total magnitudes are measured via surface photometry. This high-quality database allows us to build a well-defined luminosity-metallicity relation in the range -13 >= M(H) >= -20. The scatter around its linear fit is reduced to 0.11 dex, the lowest of all relations currently available. There might exist a difference between the relation for dIrrs and the relation for giant galaxies, although a firm conclusion should await direct abundance determinations for a significant sample of massive galaxies. This new dataset provides an improved luminosity-metallicity relation, based on a standard NIR band, for dwarf star-forming galaxies. The relation can now be compared with some confidence to the predictions of models of galaxy evolution. Exciting follow-ups of this work are (a) exploring groups with higher densities, (b) exploring nearby galaxy clusters to probe environmental effects on the luminosity-metallicity relation, and (c) deriving direct oxygen abundances in the central regions of star-forming giant galaxies, to settle the question of a possible dichotomy between the chemical evolution of dwarfs and that of massive galaxies.
We present medium spectral resolution near-infrared (NIR) HK-band spectra for 8 low redshift (z<0.06) radio galaxies to study the NIR stellar properties of their host galaxies. As a homogeneous comparison sample, we used 9 inactive elliptical galaxie s that were observed with similar resolution and wavelength range. The aim of the study is to compare the NIR spectral properties of radio galaxies to those of inactive early-type galaxies and, furthermore, produce the first NIR HK-band spectra for low redshift radio galaxies. For both samples spectral indices of several diagnostic absorption features, SiI(1.589microns), CO(1.619microns), NaI(2.207microns), CaI(2.263microns), CO(>2.29microns), were measured. To characterize the age of the populations, the measured EWs of the absorption features were fitted with the corresponding theoretical evolutionary curves of the EWs calculated by the stellar synthesis model. On average, EW(CO 2.29) of radio galaxies is somewhat greater than that of inactive ellipticals. Most likely, EW(CO 2.29) is not significantly affected by dilution, and thus indicating that elliptical galaxies containing AGN are in a different stage in their evolution than inactive ellipticals. This is also supported by comparing other NIR features, such as CaI and NaI, with each other. Absorption features are consistent with the intermediate age stellar population, suggesting that host galaxies contain both an old and intermediate age components. It is consistent with previous optical spectroscopy studies which have shown evidence on the intermediate age (~2 Gyr) stellar population of radio galaxies, and also in some of the early-type galaxies. The existence of intermediate age population is a link between the star formation episode, possibly induced by interaction or merging event, and the triggering of the nuclear activity.
We present details of a new sample of radio-loud quasars drawn from 0.013 sr of the 7C Redshift Survey. This sample is small (21 quasars) but complete in that every object with an unresolved nucleus and/or broad emission lines with S(151MHz) > 0.5 Jy has been discovered. The dependence of the quasar fraction with redshift and radio luminosity is investigated, providing new evidence supporting the unification of radio-loud quasars and powerful radio galaxies. This 7C sample is compared with optically-selected quasars, in order to determine whether there are systematic biases in the different selection techniques. There are no lightly reddened (Av approx. 1) quasars in our sample amongst the 14 with z < 2. The discovery of a reddened quasar at z = 2.034 and its implications are discussed. A tight correlation between radio luminosity and optical/near infrared continuum luminosity for a subset of the sample is also found.
190 - N. Seymour 2008
We present the first mid-infrared Spitzer/Infrared Spectrograph (IRS) observations of powerful radio galaxies at z>2. These radio galaxies, 4C +23.56 (z=2.48) and 6C J1908+7220 (z=3.53), both show strong mid-infrared continua, but with 6C J1908+7220 also showing strong PAH emission at rest-frame 6.2 and 7.7um. In 4C+23.56 we see no obvious PAH features above the continuum. The PAH emission in 6C J1908+7220 is the amongst the most distant observed to date and implies that there is a large instantaneous star formation rate (SFR). This is consistent with the strong detection of 6C J1908+7220 at far-IR and sub-mm wavelengths, indicative of large amounts of cold dust, ~10^9Msun. Powerful radio galaxies at lower redshifts tend to have weak or undetectable PAH features and typically have lower far-IR luminosities. In addition, 4C 23.56 shows moderate silicate absorption as seen in less luminous radio galaxies, indicating tau_{9.7um}=0.3+/-0.05. This feature is shifted out of the observed wavelength range for 6C J1908+7220. The correlation of strong PAH features with large amounts of cold dust, despite the presence of a powerful AGN, is in agreement with other recent results and implies that star formation at high redshift is, in some cases at least, associated with powerful, obscured AGN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا