ترغب بنشر مسار تعليمي؟ اضغط هنا

The Master Catalogue of stars towards the Magellanic Clouds

54   0   0.0 ( 0 )
 نشر من قبل Nausicaa Delmotte
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. Delmotte




اسأل ChatGPT حول البحث

The Master Catalogue of stars towards the Magellanic Clouds (MC2) is a multi-wavelength reference catalogue. The current paper presents the first results of the MC2 project. We started with a massive cross-identification of the two recently released near-infrared surveys: the DENIS Catalogue towards the Magellanic Clouds (DCMC) with more than 1.3 million sources identified in at least two of the three DENIS filters (I J Ks) and the 2nd Incremental Release of the 2MASS point source catalogue (J H Ks) covering the same region of the sky. Both point source catalogues provide an unprecedented wealth of data on the stellar populations of the Magellanic Clouds (MCs). The cross-matching procedure has been extended to optical wavelength ranges, including the UCAC1 (USNO) and GSC2.2 catalogues. New cross-matching procedures for very large catalogues have been developed and important results on the astrometric and photometric accuracy of the cross-identified catalogues were derived. The cross-matching of large surveys is an essential tool to improve our understanding of their specific contents. This study has been partly supported by the ASTROVIRTEL project that aims at improving access to astronomical archives as virtual telescopes.



قيم البحث

اقرأ أيضاً

We have compiled the near infrared Point Source Catalogue (PSC) towards the Magellanic Clouds (MCs) extracted from the data obtained with the Deep Near Infrared Survey of the Southern Sky - DENIS (Epchtein et al. 1997). The catalogue covers an area o f of 19.87* 16 square degrees centered on (RA, DEC)=(5h27m20s, -69o0000) for the Large Magellanic Cloud (LMC) and 14.7* 10 square degrees centered on (RA, DEC)=(h02m40s, -73o0000 for the Small Magellanic Cloud (SMC) at the epoch J2000. It contains about 1300000 sources towards the LMC and 300000 sources towards the SMC each detected in at least 2 of the 3 photometric bands involved in the survey (I, J, Ks). 70% of the detected sources are true members of the Magellanic Clouds, respectively and consist mainly of red giants, asymptotic giant branch stars and super-giants. The observations have all been made with the same instrument and the data have been calibrated and reduced uniformly. The catalogue provides a homogeneous set of photometric data.
We present a Catalog of high proper motion (HPM) stars detected in the foreground of central parts of the Magellanic Clouds. The Catalog contains 2161 objects in the 4.5 square degree area towards the LMC, and 892 HPM stars in the 2.4 square degree a rea towards the SMC. The Catalog is based on observations collected during four years of the OGLE-II microlensing survey. The Difference Image Analysis (DIA) of the images provided candidate HPM stars with proper motion as small as 4 mas/yr. These appeared as pseudo-variables, and were all measured astrometrically on all CCD images, providing typically about 400 data points per star. The reference frame was defined by the majority of background stars, most of them members of the Magellanic Clouds. The reflex motion due to solar velocity with respect to the local standards of rest is clearly seen. The largest proper motion in our sample is 363 mas/yr. Parallaxes were measured with errors smaller than 20% for several stars.
We present ground-based 3 micron spectra of obscured Asymptotic Giant Branch (AGB) stars in the Magellanic Clouds (MCs). We identify the carbon stars on the basis of the 3.1 micron absorption by HCN and C2H2 molecules. We show evidence for the exis tence of carbon stars up to the highest AGB luminosities (Mbol=-7 mag, for a distance modulus to the LMC of 18.7 mag). This proves that Hot Bottom Burning (HBB) cannot, in itself, prevent massive AGB stars from becoming carbon star before leaving the AGB. It also sets an upper limit to the distance modulus of the Large Magellanic Cloud of 18.8 mag. The equivalent width of the absorption band decreases with redder (K-L) colour when the dust continuum emission becomes stronger than the photospheric emission. Carbon stars with similar (K-L) appear to have equally strong 3 micron absorption in the MCs and the Milky Way. We discuss the implications for the carbon and nitrogen enrichment of the stellar photosphere of carbon stars.
We present results of our study of the infrared properties of massive stars in the Large and Small Magellanic Clouds, which are based on the Spitzer SAGE surveys of these galaxies. We have compiled catalogs of spectroscopically confirmed massive star s in each galaxy, as well as photometric catalogs for a subset of these stars that have infrared counterparts in the SAGE database, with uniform photometry from 0.3 to 24 microns in the UBVIJHKs+IRAC+MIPS24 bands. These catalogs enable a comparative study of infrared excesses of OB stars, classical Be stars, yellow and red supergiants, Wolf-Rayet stars, Luminous Blue Variables and supergiant B[e] stars, as a function of metallicity, and provide the first roadmaps for interpreting luminous, massive, resolved stellar populations in nearby galaxies at infrared wavelengths.
99 - Marcin Hajduk 2020
We obtained new spectra of fourteen Magellanic Cloud planetary nebulae with the South African Large Telescope to determine heating rates of their central stars and to verify evolutionary models of post-asymptotic giant branch stars. We compared new s pectra with observations made in previous years. Five planetary nebulae showed an increase in excitation over time. Four of their central stars exhibit [WC] features in their spectra, including three new detections. This raises the total number of [WC] central stars of PNe in the Magellanic Clouds to ten. We compared determined heating rates of the four [WC] central stars with the He-burning post-asymptotic giant branch evolutionary tracks and the remaining star with the H-burning tracks. Determined heating rates are consistent with the evolutionary models for both H and He-burning post-asymptotic giant branch stars. The central stars of the PNe that show the fastest increase of excitation are also the most luminous in the sample. This indicates that [WC] central stars in the Magellanic Clouds evolve faster than H-burning central stars, and they originate from more massive progenitors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا