ﻻ يوجد ملخص باللغة العربية
The relationship between observed variability time and emission region geometry is explored for the case of emission by relativistic jets. The approximate formula for the jet-frame size of the emission region, $R=DcDelta t_{rm obs}$ is shown to lead to large systematic errors when used together with observed luminosity and assumed or estimated Doppler factor $D$ to estimate the jet-frame photon energy density. These results have implications for AGN models in which low-energy photons are targets for interaction of high energy particles and photons, e.g. synchrotron-self Compton models and hadronic blazar models, as well as models of intra-day variable sources in which the photon energy density imposes a brightness temperature limit through Compton scattering. The actual relationship between emission region geometry and observed variability is discussed for a variety of geometries including cylinders, spheroids, bent, helical and conical jet structures, and intrinsic variability models including shock excitation. The effects of time delays due to finite particle acceleration and radiation time scales are also discussed.
We present the results of a multi-wavelength follow up campaign for the luminous nuclear transient Gaia16aax, which was first identified in January 2016. The transient is spatially consistent with the nucleus of an active galaxy at z=0.25, hosting a
The apparent position of jet base (core) in radio-loud active galactic nuclei changes with frequency because of synchrotron self-absorption. Studying this `core shift` effect enables us to reconstruct properties of the jet regions close to the centra
We discuss the opacity in the core regions of active galactic nuclei observed with Very Long Baseline Interferometry (VLBI), and describe a new method for deriving the frequency-dependent shifts of the VLBI core from the frequency-dependent time lags
We compile the radio-optical-X-ray spectral energy distributions (SEDs) of 65 knots and 29 hotspots in 41 active galactic nucleus jets to examine their high energy radiation mechanisms. Their SEDs can be fitted with the single-zone leptonic models, e
Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster mediu