ترغب بنشر مسار تعليمي؟ اضغط هنا

The Planetary Nebulae Spectrograph: the green light for Galaxy Kinematics

80   0   0.0 ( 0 )
 نشر من قبل Nigel Douglas
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Planetary nebulae are now well established as probes of galaxy dynamics and as standard candles in distance determinations. Motivated by the need to improve the efficiency of planetary nebulae searches and the speed with which their radial velocities are determined, a dedicated instrument - the Planetary Nebulae Spectrograph or PN.S - has been designed and commissioned at the 4.2m William Herschel Telescope. The high optical efficiency of the spectrograph results in the detection of typically ~ 150 PN in galaxies at the distance of the Virgo cluster in one night of observations. In the same observation the radial velocities are obtained with an accuracy of ~ 20 km/s

قيم البحث

اقرأ أيضاً

We report here the successful commissioning of the PN.Spectrograph, the first special-purpose instrument for the measurement of galaxy kinematics through the PN population
We present a catalogue of positions, magnitudes and velocities for 3300 emission-line objects found by the Planetary Nebula Spectrograph in a survey of the Andromeda Galaxy, M31. Of these objects, 2615 are found likely to be planetary nebulae (PNe) a ssociated with M31. Initial results from this survey include: the likely non-existence of Andromeda VIII; a universal PN luminosity function, with the exception of a small amount of obscuration, and a small offset in normalization between bulge and disk components; very faint kinematically-selected photometry implying no cut-off in the disk to beyond 4 scalelengths and no halo population in excess of the bulge out to 10 effective bulge radii; disk kinematics that show significant dispersion and asymmetric drift out to large radii, consistent with a warm flaring disk; and no sign of any variation in kinematics with PN luminosity, suggesting that PNe arise from a fairly uniform population of old stars.
We present first results of a study of the halo kinematics for a sample of early type galaxies using planetary nebulae (PNe) as kinematical tracers. PNe allow to extend up to several effective radii (Re) the information from absorption line kinematic s (confined to within 1 or 2 Re), providing valuable information and constraints for merger simulations and galaxy formation models. We find that the specific angular momentum per unit mass has a more complex radial dependence when the halo region is taken into account and that the halo velocity dispersion is related to the total galaxy luminosity, isophotal shape, and number of PNe per unit of luminosity
The origins of S0 galaxies remain obscure, with various mechanisms proposed for their formation, likely depending on environment. These mechanisms would imprint different signatures in the galaxies stellar kinematics out to large radii, offering a me thod for distinguishing between them. We aim to study a sample of six S0 galaxies from a range of environments, and use planetary nebulae (PNe) as tracers of their stellar populations out to very large radii, to determine their kinematics in order to understand their origins. Using a special-purpose instrument, the Planetary Nebula Spectrograph, we observe and extract PNe catalogues for these six systems*. We show that the PNe have the same spatial distribution as the starlight, that the numbers of them are consistent with what would be expected in a comparable old stellar population in elliptical galaxies, and that their kinematics join smoothly onto those derived at smaller radii from conventional spectroscopy. The high-quality kinematic observations presented here form an excellent set for studying the detailed kinematics of S0 galaxies, in order to unravel their formation histories. We find that PNe are good tracers of stellar kinematics in these systems. We show that the recovered kinematics are largely dominated by rotational motion, although with significant random velocities in most cases.
83 - N.R. Napolitano 2004
The Planetary Nebula Spectrograph is a dedicated instrument for measuring radial velocity of individual Planetary Nebulae (PNe) in galaxies. This new instrument is providing crucial data with which to probe the structure of dark halos in the outskirt s of elliptical galaxies in particular, which are traditionally lacking of easy interpretable kinematical tracers at large distance from the center. Preliminary results on a sample of intermediate luminosity galaxies have shown little dark matter within 5 ~ R_eff implying halos either not as massive or not as centrally concentrated as CDM predicts (Romanowsky et al. 2003). We briefly discuss whether this is consistent with a systematic trend of the dark matter content with the luminosity as observed in an extended sample of early-type galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا