ترغب بنشر مسار تعليمي؟ اضغط هنا

Kilohertz quasi-periodic oscillations and strong field gravity in X-ray binaries

155   0   0.0 ( 0 )
 نشر من قبل Mariano Mendez
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mariano Mendez




اسأل ChatGPT حول البحث

In the past five years observations with the Rossi X-ray Timing Explorer have revealed fast quasi-periodic oscillations in the X-ray flux of about 20 X-ray binaries. Thought to originate close to the surface of a neutron star, these oscillations provide unique information about the strong gravitational field in which they are produced.



قيم البحث

اقرأ أيضاً

121 - H. X. Yin , Y. H. Zhao 2007
The recently updated data of the twin kilohertz quasi-periodic oscillations (kHz QPOs) in the neutron star low-mass X-ray binaries are analyzed. The power-law fitting $ u_{1}=a( u_{2}/1000)^{b}$ and linear fitting $ u_{2}=A u_{1}+B$ are applied, indi vidually, to the data points of four Z sources (GX 17+2, GX 340+0, GX 5-1 and Sco X-1) and four Atoll sources (4U 0614+09, 4U 1608-52, 4U 1636-53 and 4U 1728-34). The $chi^{2}$-tests show that the power-law correlation and linear correlation both can fit data well. Moreover, the comparisons between the data and the theoretical models for kHz QPOs are discussed.
119 - Mariano Mendez 2006
I study the behaviour of the maximum rms fractional amplitude, $r_{rm max}$ and the maximum coherence, $Q_{rm max}$, of the kilohertz quasi-periodic oscillations (kHz QPOs) in a dozen low-mass X-ray binaries. I find that: (i) The maximum rms amplitud es of the lower and the upper kHz QPO, $r^{ell}_{rm max}$ and $r^{rm u}_{rm max}$, respectively, decrease more or less exponentially with increasing luminosity of the source; (ii) the maximum coherence of the lower kHz QPO, $Q^{ell}_{rm max}$, first increases and then decreases exponentially with luminosity, at a faster rate than both $r^{ell}_{rm max}$ and $r^{rm u}_{rm max}$; (iii) the maximum coherence of the upper kHz QPO, $Q^{rm u}_{rm max}$, is more or less independent of luminosity; and (iv) $r_{rm max}$ and $Q_{rm max}$ show the opposite behaviour with hardness of the source, consistent with the fact that there is a general anticorrelation between luminosity and spectral hardness in these sources. Both $r_{rm max}$ and $Q_{rm max}$ in the sample of sources, and the rms amplitude and coherence of the kHz QPOs in individual sources show a similar behaviour with hardness. This similarity argues against the interpretation that the drop of coherence and rms amplitude of the lower kHz QPO at high QPO frequencies in individual sources is a signature of the innermost stable circular orbit around a neutron star. I discuss possible interpretations of these results in terms of the modulation mechanisms that may be responsible for the observed variability.
We study the energy-dependent time lags and rms fractional amplitude of the kilohertz quasi-periodic oscillations (kHz QPOs) of a group of neutron-star low mass X-ray binaries (LMXBs). We find that for the lower kHz QPO the slope of the best-fitting linear model to the time-lag spectrum and the total rms amplitude integrated over the 2 to 25 keV energy band both decrease exponentially with the luminosity of the source. For the upper kHz QPO the slope of the time-lag spectrum is consistent with zero, while the total rms amplitude decreases exponentially with the luminosity of the source. We show that both the slope of the time-lag spectrum and the total rms amplitude of the lower kHz QPO are linearly correlated with a slope of ~1. Finally, we discuss the mechanism that could be responsible for the radiative properties of the kHz QPOs, with the variability originating in a Comptonising cloud or corona that is coupled to the innermost regions of the accretion disc, close to the neutron star.
(abridged) We studied the energy and frequency dependence of the Fourier time lags and intrinsic coherence of the kHz QPOs in the NS LMXBs 4U 1608-52 and 4U 1636-53 using RXTE data. In both sources we confirmed energy-dependent soft lags of 10-100 mu s for the lower kHz QPO. We also found that the time lags of the upper kHz QPO are independent of energy and inconsistent with the soft lags of the lower kHz QPO. The intrinsic coherence of the lower kHz QPO remains constant at 0.6 from 5 to 12 keV, and then drops to zero, while for the upper kHz QPO the intrinsic coherence is consistent with zero across the full energy range. The intrinsic coherence of the upper kHz QPO is consistent with zero over the full frequency range of the QPO, except in 4U 1636-53 at ~780 Hz where it increases to 0.13. In 4U 1636-53, for the lower kHz QPO the 4-12 keV photons lag the 12-20 keV ones by 25 mu s in the QPO frequency range 500-850 Hz, with the lags decreasing to 15 mu s at higher frequencies. In 4U 1608-52 the soft lags of the lower kHz QPO remain constant at 40 mu s. In 4U 1636-53, for the upper kHz QPO the 12-20 keV photons lag the 4-12 keV ones by 11 +/- 3 mu s, independent of QPO frequency; we found consistent results for the time lags of the upper kHz QPO in 4U 1608-52. The intrinsic coherence of the lower kHz QPO increases from ~0-0.4 at 600 Hz to 1 and 0.6 at 800 Hz in 4U 1636-53 and 4U 1608-52, respectively. In 4U 1636-53 it decreases to 0.5 at 920 Hz, while in 4U 1608-52 we do not have data above 800 Hz. We discuss our results in the context of scenarios in which the soft lags are either due to reflection off the accretion disc or up-/down-scattering in a hot medium close to the neutron star. We finally explore the connection between, on one hand the time lags and the intrinsic coherence of the kHz QPOs, and on the other the QPOs amplitude and quality factor in these two sources.
When the accretion disc around a weakly magnetised neutron star (NS) meets the stellar surface, it should brake down to match the rotation of the NS, forming a boundary layer. As the mechanisms potentially responsible for this braking are apparently inefficient, it is reasonable to consider this layer as a spreading layer (SL) with negligible radial extent and structure. We perform hydrodynamical 2D spectral simulations of an SL, considering the disc as a source of matter and angular momentum. Interaction of new, rapidly rotating matter with the pre-existing, relatively slow material co-rotating with the star leads to instabilities capable of transferring angular momentum and creating variability on dynamical timescales. For small accretion rates, we find that the SL is unstable for heating instability that disrupts the initial latitudinal symmetry and produces large deviations between the two hemispheres. This instability also results in breaking of the axial symmetry as coherent flow structures are formed and escape from the SL intermittently. At enhanced accretion rates, the SL is prone to shearing instability and acts as a source of oblique waves that propagate towards the poles, leading to patterns that again break the axial symmetry. We compute artificial light curves of an SL viewed at different inclination angles. Most of the simulated light curves show oscillations at frequencies close to 1kHz. We interpret these oscillations as inertial modes excited by shear instabilities near the boundary of the SL. Their frequencies, dependence on flux, and amplitude variations can explain the high-frequency pair quasi-periodic oscillations observed in many low-mass X-ray binaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا