ﻻ يوجد ملخص باللغة العربية
Contrary to theoretical expectations, observations with the Rossi X-ray Timing Explorer (RXTE) show that in X-ray binaries timing properties are not uniquely correlated with X-ray luminosity. For instance, although the frequencies of the kilohertz quasi-periodic oscillations (kHz QPOs) correlate with X-ray flux on short (~few hours) time scales, on time scales longer than a day the QPO appears at more or less the same frequency, whereas the luminosity may be a factor of a few different. The result is a set of almost parallel tracks in a QPO frequency vs. X-ray flux plot. Despite the parallel tracks are a common phenomenon among kHz QPO sources, until now, after five years of observations with RXTE, not a single transition between two of these tracks had been seen. Here I present the first detection of such a transition, in 4U 1636-53.
We analyzed the recently published kHz QPO data in the neutron star low-mass X-ray binaries (LMXBs), in order to investigate the different correlations of the twin peak kilohertz quasi-eriodic oscillations (kHz QPOs) in bright Z sources and in the le
We collect the data of twin kilohertz quasi-periodic oscillations (kHz QPOs) published before 2012 from 26 neutron star (NS) low-mass X-ray binary (LMXB) sources, then we analyze the centroid frequency ( u) distribution of twin kHz QPOs (lower freque
{We investigate the coherence of the twin kilohertz quasi-periodic oscillations (kHz QPOs) in the low-mass X-ray binary (LMXB) theoretically. The profile of upper kHz QPO, interpreted as Keplerian frequency, is ascribed to the radial extent of the kH
We discovered kHz QPOs in 80 archived RXTE observations from the peculiar low-mass X-ray binary (LMXB) Circinus X-1. In 11 cases these appear in pairs in the frequency range of ~230 Hz to ~500 Hz for the upper kHz QPO and ~56 Hz to ~225 Hz for the lo
X-ray reverberation lags have recently been discovered in both active galactic nuclei (AGN) and black hole X-ray binaries. A recent study of the neutron star low-mass X-ray binary 4U 1608-52 has also shown significant lags, whose properties hint at a