ترغب بنشر مسار تعليمي؟ اضغط هنا

A neutral hydrogen distance limit to the relativistic binary PSR J1141-6545

230   0   0.0 ( 0 )
 نشر من قبل Stephen Ord
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have obtained an HI absorption spectrum of the relativistic binary PSR J1141-6545 and used it to constrain the distance to the system. The spectrum suggests that the pulsar is at, or beyond, the tangent point, estimated to be at 3.7 kpc. PSR J1141-6545 offers the promise of stringent tests of General Relativity (GR) by comparing its observed orbital period derivative with that derived from other relativistic observables. At the distance of PSR J1141-6545 it should be possible to verify GR to an accuracy of just a few percent, as contributions to the observed orbital period derivative from kinematic terms will be a small fraction of that induced by the emission of gravitational radiation. PSR J1141-6545 will thus make an exceptional gravitational laboratory.



قيم البحث

اقرأ أيضاً

We report a dramatic orbital modulation in the scintillation timescale of the relativistic binary pulsar J1141--6545 that both confirms the validity of the scintillation speed methodology and enables us to derive important physical parameters. We hav e determined the space velocity, the orbital inclination and even the longitude of periastron of the binary system, which we find to be in good agreement with that obtained from pulse timing measurements. Our data permit two equally-significant physical interpretations of the system. The system is either an edge-on binary with a high space velocity ($sim 115$ km s$^{-1}$) or is more face-on with a much slower velocity ($sim 45$ km s$^{-1}$). We favor the former, as it is more consistent with pulse timing and the distribution of known neutron star masses. Under this assumption, the runaway velocity of 115 km s$^{-1}$ is much greater than is expected if pulsars do not receive a natal kick at birth. The derived inclination of the binary system is (76pm 2.5^{circ}) degrees, implying a companion mass of 1.01 (pm )~0.02 M(_{odot}) and a pulsar mass of 1.29 (pm)~0.02 M(_{odot}). Our derived physical parameters indicate that this pulsar should prove to be an excellent laboratory for tests of gravitational wave emission.
The binaries PSR J1141-6545 and PSR B2303+46 each appear to contain a white dwarf which formed before the neutron star. We describe an evolutionary pathway to produce these two systems. In this scenario, the primary transfers its envelope onto the se condary which is then the more massive of the two stars, and indeed sufficiently massive later to produce a neutron star via a supernova. The core of the primary produces a massive white dwarf which enters into a common envelope with the core of the secondary when the latter evolves off the main sequence. During the common envelope phase, the white dwarf and the core of the secondary spiral together as the envelope is ejected. The evolutionary history of PSR J1141-6545 and PSR B2303+46 differ after this phase. In the case of PSR J1141--6545, the secondary (now a helium star) evolves into contact transferring its envelope onto the white dwarf. We propose that the vast majority of this material is in fact ejected from the system. The remains of the secondary then explode as a supernova producing a neutron star. Generally the white dwarf and neutron star will remain bound in tight, often eccentric, systems resembling PSR J1141-6545. These systems will spiral in and merge on a relatively short timescale and may make a significant contribution to the population of gamma ray burst progenitors. In PSR B2303+46, the helium-star secondary and white dwarf never come into contact. Rather the helium star loses its envelope via a wind, which increases the binary separation slightly. Only a small fraction of such systems will remain bound when the neutron star is formed (as the systems are wider). Those systems which are broken up will produce a population of high-velocity white dwarfs and neutron stars.
Pulsars in close binary systems have provided some of the most stringent tests of strong-field gravity to date. The pulsar--white-dwarf binary system J1141-6545 is specifically interesting due to its gravitational asymmetry which makes it one of the most powerful probes of tensor-scalar theories of gravity. We give an overview of current gravitational tests provided by the J1141-6545 binary system and comment on how anomalous accelerations, geodetic precession and timing instabilities may be prevented from limiting future tests of gravity to come from this system.
75 - D. J. Champion 2004
We report the discovery of a new binary pulsar, PSR J1829+2456, found during a mid-latitude drift-scan survey with the Arecibo telescope. Our initial timing observations show the 41-ms pulsar to be in a 28-hr, slightly eccentric, binary orbit. The ad vance of periastron, omegadot = 0.28 +/- 0.01 deg/yr is derived from our timing observations spanning 200 days. Assuming that the advance of periastron is purely relativistic and a reasonable range of neutron star masses for PSR J1829+2456 we constrain the companion mass to be between 1.22 Msun and 1.38 Msun, making it likely to be another neutron star. We also place a firm upper limit on the pulsar mass of 1.38 Msun. The expected coalescence time due to gravitational-wave emission is long (~60 Gyr) and this system will not significantly impact upon calculations of merger rates that are relevant to upcoming instruments such as LIGO.
The pulsar/massive star binary system PSR B1259-63 / LS 2883 is one of the best-studied gamma-ray binaries, a class of systems whose bright gamma-ray flaring can provide important insights into high-energy physics. Using the Australian Long Baseline Array we have conducted very long baseline interferometric observations of PSR B1259-63 over 4.4 years, fully sampling the 3.4-year orbital period. From our measured parallax of $0.38pm0.05$ mas we use a Bayesian approach to infer a distance of $2.6^{+0.4}_{-0.3}$ kpc. We find that the binary orbit is viewed at an angle of $154pm3$ degrees to the line of sight, implying that the pulsar moves clockwise around its orbit as viewed on the sky. Taking our findings together with previous results from pulsar timing observations, all seven orbital elements for the system are now fully determined. We use our measurement of the inclination angle to constrain the mass of the stellar companion to lie in the range 15-31$M_{odot}$. Our measured distance and proper motion are consistent with the system having originated in the Cen OB1 association and receiving a modest natal kick, causing it to have moved $sim$8 pc from its birthplace over the past $sim3times10^5$ years. The orientation of the orbit on the plane of the sky matches the direction of motion of the X-ray synchrotron-emitting knot observed by the Chandra X-ray Observatory to be moving away from the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا