ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton observation of the Lockman Hole II. Spectral analysis

85   0   0.0 ( 0 )
 نشر من قبل Vincenzo Mainieri
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. Mainieri




اسأل ChatGPT حول البحث

We present the results of the X-ray spectral analysis of the first deep X-ray survey with the XMM-Newton observatory during Performance Verification. We restrict the analysis to the sample of 98 sources with more than 70 net counts (flux limit in the [0.5-7] keV band of 1.6 10^{-15} erg cm^{-2} s^{-1}) of which 61 have redshift identification. We find no correlation between the spectral index Gamma and the intrinsic absorption column density N_H and, for both the Type-1 and Type-2 AGN populations, we obtain <Gamma>~2. The progressive hardening of the mean X-ray source spectrum with decreasing flux is essentially due to an increase in intrinsic absorption. The marked separation between the two AGN populations in several diagnostics diagrams, involving X-ray colour, X-ray flux, optical/near IR colour and optical brightness, is also a consequence of different absorption column densities and enables the classification of optically faint obscured AGN. About 27% of the subsample with R-K colour are EROs (R-K>5) and most of these 18 X-ray selected EROs contain anobscured AGN as revealed by their high X-ray-to-optical/near IR flux ratios. There are six sources in our sample with L_X[0.5-10]>10^44 erg s^{-1} and log(N_H)>10^22 cm^{-2}: which are likely Type-2 QSOs and we thus derive a density of ~69 objects of this class per square degree.

قيم البحث

اقرأ أيضاً

We present the results of the X-ray spectral analysis of the deep survey obtained with the XMM-Newton observatory on the Lockman Hole. The X-ray data and the cumulative source counts were reported by Hasinger et al. (2001). Our sample contains 104 so urces with a count limit of 70 of which 55 have redshift identification. The redshift distribution peaks at z ~ 0.8, with a strong excess of low z AGN and a deficiency of sources at z > 2 compared to population synthesis models for the X-ray background. The type 2 (obscured) AGN have weaker soft X-ray and optical fluxes. They cluster around z ~ 1. There is a clear separation between the classical/type 1 AGN and the obscured/type 2 ones in several diagnostics involving X-ray colour, X-ray flux, optical/near IR colour and optical brightness. Using the z subsample, we show that this separation between the AGN populations is a consequence of different absorption column densities. The two populations have the same average spectral index, Gamma ~ 1.9. At the 70 count detection limit, there is also a strong overlap between the two populations in hard X-ray flux and near IR brightness. These diagnostics should enable the classification of obscured/type 2 AGN very faint optically.
We report on the first deep X-ray survey with the XMM-Newton observatory during the performance verification phase. The field of the Lockman Hole, one of the best studied sky areas over a very wide range of wavelengths, has been observed. A total of ~100 ksec good exposure time has been accumulated. Combining the images of the European Photon Imaging Camera (EPIC) detectors we reach a flux limit of 0.31, 1.4 and 2.4 X 10^{-15} erg cm^{-2} s^{-1}, respectively in the 0.5-2, 2-10, and 5-10 keV band. Within an off-axis angle of 10 arcmin we detect 148, 112 and 61 sources, respectively. The log(N)-log(S) relation in the three bands is compared with previous results. In particular in the 5-10 keV band these observations present the deepest X-ray survey ever, about a factor 20 more sensitive than the previous BeppoSAX observations. Using X-ray spectral diagnostics and the set of previously known, spectroscopically identified ROSAT sources in the field, the new sources can be classified. XMM-Newton detects a significant number (~40%) of X-ray sources with hard, probably intrinsically absorbed X-ray spectra, confirming a prediction of the population synthesis models for the X-ray background.
This paper presents the results of a study of X-ray spectral and flux variability on time scales from months to years, of the 123 brightest objects (including 46 type-1 AGN and 28 type-2 AGN) detected with XMM-Newton in the Lockman Hole field. We det ected flux variability with a significance >3sigma in ~50% of the objects, including 68+-11% and 48+-15% among our samples of type-1 and type-2 AGN. However we found that the fraction of sources with best quality light curves that exhibit flux variability on the time scales sampled by our data is >80%, i.e the great majority of the AGN population may actually vary in flux on long time scales. The mean relative intrinsic amplitude of flux variability was found to be ~0.15 although with a large dispersion in measured values, from ~0.1 to ~0.65. The flux variability properties of our samples of AGN do not significantly depend on the redshift or X-ray luminosity of the objects and seem to be similar for the two AGN types. Using a broad band X-ray colour we found that the fraction of sources showing spectral variability with a significance >3sigma is ~40% i.e. less common than flux variability. Spectral variability was found to be more common in type-2 AGN than in type-1 AGN with a significance >99%. This result is consistent with the fact that part of the soft emission in type-2 AGN comes from scattered radiation, and this component is expected to be much less variable than the hard component. The observed flux and spectral variability properties of our objects cannot be explained as being produced by variability of one spectral component alone, for example changes in the continuum shape associated with changes in the mass accretion rate, or variability in the amount of X-ray absorption. At least two spectral components must vary in order to explain the X-ray variability of our objects.
We present the results of a 500 ksec long XMM-Newton observation and a 120 ksec long quasi-simultaneous Chandra observation of the Narrow Line Seyfert 1 galaxy 1H0707-495 performed in 2010 September. Consistent with earlier results by Fabian et al. ( 2009) and Zoghbi et al. (2010), the spectrum is found to be dominated by relativistically broadened reflection features from an ionised accretion disc around a maximally rotating black hole. Even though the spectra changed between this observation and earlier XMM-Newton observations, the physical parameters of the black hole and accretion disc (i.e., spin and inclination) are consistent between both observations. We show that this reflection spectrum is slightly modified by absorption in a mildly relativistic, highly ionised outflow which changed velocity from around 0.11c to 0.18c between 2008 January and 2010 September. Alternative models, in which the spectral shape is dominated by absorption, lead to spectral fits of similar quality, however, the parameters inferred for the putative absorber are unphysical.
326 - A. Goldwurm 2001
The XMM-Newton X-ray observatory pointed the galactic black hole candidate and microquasar GRS 1758-258 in September 2000 for about 10 ks during a program devoted to the scan of the Galactic Center regions. Preliminary results from EPIC MOS camera da ta are presented here. The data indicate that the source underwent a state transition from its standard low-hard state to an intermediate state. For the first time in this source the ultra-soft component of the accretion disk, which black hole binaries display in intermediate or high-soft states, was clearly detected and measured thanks to the high spectral capabilities of XMM-Newton.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا