ترغب بنشر مسار تعليمي؟ اضغط هنا

The nonlinear small-scale dynamo and isotropic MHD turbulence

54   0   0.0 ( 0 )
 نشر من قبل Alex Schekochihin
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This is a brief review of the main results of our recent studies of the nonlinear evolution of the small-scale MHD dynamo in the high-Prandtl-number regime and of the structure of the resulting saturated state of the isotropic homogeneous MHD turbulence. It is emphasized that the MHD regime without a uniform mean field (as is the case in our studies) is fundamentally different from the one in which such a field is externally imposed. The ability of the turbulence to bend and fold the magnetic-field lines leads to the emergence of a distinctive small-scale structure. The fields are organized in folds of characteristic length comparable to the size of the largest turbulent eddies with spatial-direction reversals at the resistive scale. These folds are very hard to destroy. In the nonlinear regime, the folding structure coexists with Alfven waves propagating along the folds. The turbulent energy injected by the forcing is dissipated in part resistively via the small-scale magnetic fields, and in part viscously via the Alfven waves.



قيم البحث

اقرأ أيضاً

We consider the problem of incompressible, forced, nonhelical, homogeneous, isotropic MHD turbulence with no mean magnetic field. This problem is essentially different from the case with externally imposed uniform mean field. There is no scale-by-sca le equipartition between magnetic and kinetic energies as would be the case for the Alfven-wave turbulence. The isotropic MHD turbulence is the end state of the turbulent dynamo which generates folded fields with small-scale direction reversals. We propose that the statistics seen in numerical simulations of isotropic MHD turbulence could be explained as a superposition of these folded fields and Alfven-like waves that propagate along the folds.
108 - A.A.Schekochihin 2003
We consider the problem of incompressible, forced, nonhelical, homogeneous and isotropic MHD turbulence with no mean magnetic field and large magnetic Prandtl number. This type of MHD turbulence is the end state of the turbulent dynamo, which generat es folded fields with small-scale direction reversals. We propose a model in which saturation is achieved as a result of the velocity statistics becoming anisotropic with respect to the local direction of the magnetic folds. The model combines the effects of weakened stretching and quasi-two-dimensional mixing and produces magnetic-energy spectra in remarkable agreement with numerical results at least in the case of a one-scale flow. We conjecture that the statistics seen in numerical simulations could be explained as a superposition of these folded fields and Alfven-like waves that propagate along the folds.
110 - Siyao Xu , Alex Lazarian 2021
Small-scale turbulent dynamo is responsible for the amplification of magnetic fields on scales smaller than the driving scale of turbulence in diverse astrophysical media. Most earlier dynamo theories concern the kinematic regime and small-scale magn etic field amplification. Here we review our recent progress in developing the theories for the nonlinear dynamo and the dynamo regime in a partially ionized plasma. The importance of reconnection diffusion of magnetic fields is identified for both the nonlinear dynamo and magnetic field amplification during gravitational contraction. For the dynamo in a partially ionized plasma, the coupling state between neutrals and ions and the ion-neutral collisional damping can significantly affect the dynamo behavior and the resulting magnetic field structure. We present both our analytical predictions and numerical tests with a two-fluid dynamo simulation on the dynamo features in this regime. In addition, to illustrate the astrophysical implications, we discuss several examples for the applications of the dynamo theory to studying magnetic field evolution in both preshock and postshock regions of supernova remnants, in weakly magnetized molecular clouds, during the (primordial) star formation, and during the first galaxy formation.
We perform a comparison between the smoothed particle magnetohydrodynamics (SPMHD) code, Phantom, and the Eulerian grid-based code, Flash, on the small-scale turbulent dynamo in driven, Mach 10 turbulence. We show, for the first time, that the expone ntial growth and saturation of an initially weak magnetic field via the small-scale dynamo can be successfully reproduced with SPMHD. The two codes agree on the behaviour of the magnetic energy spectra, the saturation level of magnetic energy, and the distribution of magnetic field strengths during the growth and saturation phases. The main difference is that the dynamo growth rate, and its dependence on resolution, differs between the codes, caused by differences in the numerical dissipation and shock capturing schemes leading to differences in the effective Prandtl number in Phantom and Flash.
We quantify possible differences between turbulent dynamo action in the Sun and the dynamo action studied in idealized simulations. For this purpose we compare Fourier-space shell-to-shell energy transfer rates of three incrementally more complex dyn amo simulations: an incompressible, periodic simulation driven by random flow, a simulation of Boussinesq convection, and a simulation of fully compressible convection that includes physics relevant to the near-surface layers of the Sun. For each of the simulations studied, we find that the dynamo mechanism is universal in the kinematic regime because energy is transferred from the turbulent flow to the magnetic field from wavenumbers in the inertial range of the energy spectrum. The addition of physical effects relevant to the solar near-surface layers, including stratification, compressibility, partial ionization, and radiative energy transport, does not appear to affect the nature of the dynamo mechanism. The role of inertial-range shear stresses in magnetic field amplification is independent from outer-scale circumstances, including forcing and stratification. Although the shell-to-shell energy transfer functions have similar properties to those seen in mean-flow driven dynamos in each simulation studied, the saturated states of these simulations are not universal because the flow at the driving wavenumbers is a significant source of energy for the magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا