ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended Thermal X-ray Emission from the Spiral-Dominant Group of Galaxies HCG 57

46   0   0.0 ( 0 )
 نشر من قبل Yasushi Fukazawa
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yasushi Fukazawa




اسأل ChatGPT حول البحث

We observed a group of galaxies, HCG 57, with ASCA. Regardless that their member galaxies are dominated by spiral galaxies, we detected extended thermal X-ray emission that is attributed to hot gas with a temperature of $1.04pm0.10$ keV. This is the second clear detection of thermal X-ray emission from a spiral-dominant group of galaxies after HCG 92. The luminosity of the thermal emission is about $5times10^{41}$ erg s$^{-1}$ in the 0.5--10 keV band, which is higher than that of HCG 92, but relatively less luminous among groups of galaxies. The X-ray emission is extended over several member galaxies, and is thus associated with the group rather than an individual galaxy. The metal abundance cannot be well constrained with a lower limit of 0.08 solar. The gas-to-stellar mass ratio is $sim0.3$. Although this is relatively low among groups, the hot gas is also a significant component even in the spiral-dominant group. We suggest that the X-ray faintness of spiral-dominant groups is due to the low surface brightness and somewhat low gas mass, at least in the case of HCG 57.



قيم البحث

اقرأ أيضاً

159 - Y. C. Zou 2013
The X-ray emission from Swift J1644+57 is not steadily decreasing instead it shows multiple pulses with declining amplitudes. We model the pulses as reverse shocks from collisions between the late ejected shells and the externally shocked material, w hich is decelerated while sweeping the ambient medium. The peak of each pulse is taken as the maximum emission of each reverse shock. With a proper set of parameters, the envelope of peaks in the light curve as well as the spectrum can be modelled nicely.
94 - Wei Cui 1996
We observed several nearby face-on spiral galaxies with the ROSAT PSPC to study their 0.1-2.0 keV diffuse emission. After the exclusion of resolved discrete sources, there is unresolved X-ray emission in all the galaxies observed. Since this emission is a combination of diffuse emission and a contribution from unresolved point sources, it represents an upper limit to the truly diffuse soft X-ray emission. The derived upper limits on the diffuse emission can be interpreted in terms of upper limits to the average intensity of a putative hot halo. They can also be used to derived limits to the total energy radiated by hot gas in the observed galaxies as a function of its temperature for various assumed absorbing geometries. Beyond the equivalent solar radius (the radius at which the Sun would be in the observed galaxies), the temperature of hot gas radiating more than 30% of the total supernova power in the galaxies must be less than $10^{6.1} K$ if it is located within the disk with an assumed absorbing overburden of $3times 10^{20} cm^{-2}$, or less than $10^{5.9} K$ if it lies in an unabsorbed halo.
We present results of 120 ks observation of a compact group of galaxies HCG~62 ($z=0.0145$) with Suzaku XIS and HXD-PIN@. The XIS spectra for four annular regions were fitted with two temperature {it vapec} model with variable abundance, combined wit h the foreground Galactic component. The Galactic component was constrained to have a common surface brightness among the four annuli, and two temperature {it apec} model was preferred to single temperature model. We confirmed the multi-temperature nature of the intra-group medium reported with Chandra and XMM-Newton, with a doughnut-like high temperature ring at radii 3.3--6.5$$ in a hardness image. We found Mg, Si, S, and Fe abundances to be fairly robust. We examined the possible ``high-abundance arc at $sim 2$ southwest from the center, however Suzaku data did not confirm it. We suspect that it is a misidentification of an excess hot component in this region as the Fe line. Careful background study showed no positive detection of the extended hard X-rays previously reported with ASCA, in 5--12 keV with XIS and 12--40 keV with HXD-PIN, although our upper limit did not exclude the ASCA result. There is an indication that the X-ray intensity in $r<3.3$ region is $70pm 19$% higher than the nominal CXB level (5--12 keV), and Chandra and Suzaku data suggest that most of this excess could be due to concentration of hard X-ray sources with an average photon index of $Gamma=1.38pm 0.06$. Cumulative mass of O, Fe and Mg in the group gas and the metal mass-to-light ratio were derived and compared with those in other groups. Possible role of AGN or galaxy mergers in this group is also discussed.
51 - Alan Stockton 2005
We report Chandra ACIS observations of the fields of 4 QSOs showing strong extended optical emission-line regions. Two of these show no evidence for significant extended X-ray emission. The remaining two fields, those of 3C 249.1 and 4C 37.43, show d iscrete (but resolved) X-ray sources at distances ranging from ~10 to ~40 kpc from the nucleus. In addition, 4C 37.43 also may show a region of diffuse X-ray emission extending out to ~65 kpc and centered on the QSO. It has been suggested that extended emission-line regions such as these may originate in the cooling of a hot intragroup medium. We do not detect a general extended medium in any of our fields, and the upper limits we can place on its presence indicate cooling times of at least a few 10^9 years. The discrete X-ray emission sources we detect cannot be explained as the X-ray jets frequently seen associated with radio-loud quasars, nor can they be due to electron scattering of nuclear emission. The most plausible explanation is that they result from high-speed shocks from galactic superwinds resulting either from a starburst in the QSO host galaxy or from the activation of the QSO itself. Evidence from densities and velocities found from studies of the extended optical emission around QSOs also supports this interpretation.
We study the effects of mass and energy injection due to OB associations spread across the rotating disc of a Milky Way-type galaxy, with the help of 3D hydrodynamic simulations. We compare the resulting X-ray emission with that produced from the inj ection of mass and energy from a central region. We find that the predicted X-ray image shows a filamentary structure that arises even in the absence of disc gas inhomogeneity. This structure stems from warm clumps made of disc material being lifted by the injected gas. We show that as much as half of the total X-ray emission comes from regions surrounding warm clumps that are made of a mix of disk and injected gas. This scenario has the potential to explain the origin of the observed extra-planar X-ray emission around star forming galaxies and can be used to understand the observed sublinear relation between the $L_X$ and SFR. We quantify the mass contained in these `bow-shock regions. We also show that the top-most region of the outer shock above the central area emits harder X-rays than the rest. Further, we find that the mass distribution in different temperature ranges is bimodal, peaking at $10^4hbox{-}10^5$ K (in warm clumps) and $10^6hbox{-}10^7$ K (X-ray emitting gas). The mass loading factor is found to decrease with increasing SFR, consistent with previous theoretical estimates and simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا