ﻻ يوجد ملخص باللغة العربية
The Large Scale Structure (LSS) in the galaxy distribution is investigated using the Sloan Digital Sky Survey Early Data Release (SDSS EDR). Using the Minimal Spanning Tree technique we have extracted sets of filaments, of wall-like structures, of galaxy groups, and of rich clusters from this unique sample. The physical properties of these structures were then measured and compared with the expectations from Zeldovich theory. The measured characteristics of galaxy walls were found to be consistent with those for a spatially flat $Lambda$CDM cosmological model with $Omega_mapprox$ 0.3 and $Omega_Lambda approx$ 0.7, and for Gaussian initial perturbations with a Harrison -- Zeldovich power spectrum. Furthermore, we found that the mass functions of groups and of unrelaxed structure elements generally fit well with the expectations from Zeldovich theory, although there was some discrepancy for lower mass groups which may be due to incompleteness in the selected sample of groups. We also note that both groups and rich clusters tend to prefer the environments of walls, which tend to be of higher density, rather than the environments of filaments, which tend to be of lower density. Finally, we note evidence of systematic differences in the properties of the LSS between the Northern Galactic Cap stripe and the Southern Galactic Cap stripe -- in particular, in the physical properties of the walls, their spatial distribution, and the relative numbers of clusters embedded in walls. Because the mean separation of walls is $approx$ 60 -- 70$h^{-1}$ Mpc, each stripe only intersects a few tens of walls. Thus, small number statistics and cosmic variance are the likely drivers of these systematic differences.
The upcoming XMM Large Scale Structure Survey (XMM-LSS) will ultimately provide a unique mapping of the distribution of X-ray sources in a contiguous 64 sq. deg. region. In particular, it will provide the 3-dimensional location of about 900 galaxy cl
The 2dF Galaxy Redshift Survey is the first to measure more than 100,000 redshifts. This allows precise measurements of many of the key statistical measures of galaxy clustering, in particular redshift-space distortions and the large-scale power spec
The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single s
We present measurements of the normalised redshift-space three-point correlation function (Q_z) of galaxies from the Sloan Digital Sky Survey (SDSS) main galaxy sample. We have applied our npt algorithm to both a volume-limited (36738 galaxies) and m
We present large-scale structure catalogs from the completed extended Baryon Oscillation Spectroscopic Survey (eBOSS). Derived from Sloan Digital Sky Survey (SDSS) -IV Data Release 16 (DR16), these catalogs provide the data samples, corrected for obs