ترغب بنشر مسار تعليمي؟ اضغط هنا

T Tauri Stars in the Small Magellanic Cloud

81   0   0.0 ( 0 )
 نشر من قبل Valentin Dimitrov Ivanov
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Small Magellanic Cloud (SMC) is an excellent laboratory to study the formation of solar-mass stars in a low-metallicity environment, similar to the conditions expected in the early phases of galactic evolution. Here we present preliminary results from a search for low-mass pre-main-sequence stars in the SMC based on Hubble Space Telescope archival data. Candidates are selected on the basis of their H_alpha emission and location in the [(F675W-F814W), F814W] color-magnitude diagram. We discuss characteristics of our candidate T Tauri sample and possible follow up work.



قيم البحث

اقرأ أيضاً

Using archival Spitzer Space Telescope data, we identified for the first time a dozen runaway OB stars in the Small Magellanic Cloud (SMC) through the detection of their bow shocks. The geometry of detected bow shocks allows us to infer the direction of motion of the associated stars and to determine their possible parent clusters and associations. One of the identified runaway stars, AzV 471, was already known as a high-velocity star on the basis of its high peculiar radial velocity, which is offset by ~40 km/s from the local systemic velocity. We discuss implications of our findings for the problem of the origin of field OB stars. Several of the bow shock-producing stars are found in the confines of associations, suggesting that these may be alien stars contributing to the age spread observed for some young stellar systems. We also report the discovery of a kidney-shaped nebula attached to the early WN-type star SMC-WR3 (AzV 60a). We interpreted this nebula as an interstellar structure created owing to the interaction between the stellar wind and the ambient interstellar medium.
We present radial velocities for 2045 stars in the Small Magellanic Cloud (SMC), obtained from the 2dF survey by Evans et al. (2004). The great majority of these stars are of OBA type, tracing the dynamics of the young stellar population. Dividing th e sample into ad hoc `bar and `wing samples (north and south, respectively, of the line: $delta$ = -77$^{circ}$50 + [4$alpha$], where $alpha$ is in minutes of time) we find that the velocities in the SMC bar show a gradient of 26.3 +/- 1.6 km/s/deg. at a position angle of 126 +/- 4 deg. The derived gradient in the bar is robust to the adopted line of demarcation between the two samples. The largest redshifts are found in the SMC wing, in which the velocity distribution appears distinct from that in the bar, most likely a consequence of the interaction between the Magellanic Clouds that is predicted to have occurred 0.2 Gyr ago. The mean velocity for all stars in the sample is +172.0 +/- 0.2 km/s (redshifted by ~20 km/s when compared to published results for older populations), with a velocity dispersion of 30 km/s.
We have detected circumstellar molecular gas around a small sample of T Tauri stars through aperture synthesis imaging of CO(2-1) emission at ~2-3 resolution. RY Tauri, DL Tauri, DO Tauri, and AS 209 show resolved and elongated gaseous emission. For RY Tau, the deconvolved, half-maximum radius along the direction of elongation, PA~48deg, is 110 AU. Corresponding radii and orientations for the other sources are: DL Tau -- 250 AU at PA~84deg; DO Tau -- 350 AU at PA~160deg; AS 209 -- 290 AU at PA~138deg. RY Tau, DL Tau, and AS 209 show velocity gradients parallel to the elongation, suggesting that the circumstellar material is rotating. RY Tau and AS 209 also exhibit double-peaked spectra characteristic of a rotating disk. Line emission from DO Tau is dominated by high-velocity blue-shifted gas which complicates the interpretation. Nevertheless, there is in each case sufficient evidence to speculate that the circumstellar emission may arise from a protoplanetary disk similar to that from which our solar system formed.
The Optical Gravitational Lensing Experiment identified over 1,800 carbon-rich Mira and semi-regular variables in the Small Magellanic Cloud. Multi-epoch infrared photometry reveals that the semi-regulars and Miras follow different sequences in color -color space when using colors sensitive to molecular absorption bands. The dustiest Miras have the strongest pulsation amplitudes and longest periods. Efforts to determine bolometric magnitudes reveal possible systematic errors with published bolometric corrections.
We present $29pm1$ classical Oe stars from RIOTS4, a spatially complete, spectroscopic survey of Small Magellanic Cloud (SMC) field OB stars. The two earliest are O6e stars, and four are earlier than any Milky Way (MW) Oe stars. We also find ten Ope stars, showing He~textsc{i} infill and/or emission; five appear to be at least as hot as $sim$O7.5e stars. The hottest, star 77616, shows He~textsc{ii} disk emission, suggesting that even the hottest O stars can form decretion disks, and offers observational support for theoretical predictions that the hottest, fastest rotators can generate He$^+$-ionizing atmospheres. Our data also demonstrate that Ope stars correspond to Oe stars earlier than O7.5e with strong disk emission. We find that in the SMC, Oe stars extend to earlier spectral types than in the MW, and our SMC Oe/O frequency, $0.26pm0.04$, is much greater than the MW value, $0.03pm0.01$. These results are consistent with angular momentum transport by stronger winds suppressing decretion disk formation at higher metallicity. In addition, our SMC field Oe star frequency is indistinguishable from that for clusters, which is consistent with the similarity between rotation rates in these environments, and contrary to the pattern for MW rotation rates. Thus, our findings strongly support the viscous decretion disk model and confirm that Oe stars are the high-mass extension of the Be phenomenon. Additionally, we find that Fe~textsc{ii} emission occurs among Oe stars later than O7.5e with massive disks, and we revise a photometric criterion for identifying Oe stars to $J-[3.6] geq 0.1$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا