ﻻ يوجد ملخص باللغة العربية
The Hipparcos I-band calibration of horizontal-branch red clump giants as standard candles has lead to controversial results for the distance to the Large Magellanic Cloud (LMC). In an attempt to properly ascertain the corrections for interstellar extinction and clump age and metallicity, we analyze new multi-wavelength luminosity functions of the LMC red clump. Our photometry dataset in the K-band was obtained with the SOFI infrared imager at the European Southern Observatorys New Technology Telescope. In the V and I passbands, we employ data from WFPC2 onboard the Hubble Space Telescope. The LMC red clump is first identified in a K,(V-K) color-magnitude diagram. Our luminosity functions yield apparent magnitudes of K = 16.974, I = 18.206, and V = 19.233 (+- 0.009_r +- 0.02_s; random and systematic error, respectively). Compared directly to the Hipparcos red clump calibration (without a correction for age and metallicity), the LMC clump measurements imply a negative interstellar reddening correction. This unphysical result indicates a population difference between clumps. A modified calibration based on theoretical modeling yields an average reddening correction of E(B-V) = 0.089 +- 0.015_r, and a true LMC distance modulus of 18.493 +- 0.033_r +- 0.03_s. We reconcile our result with the short distance previously derived from OGLE II red clump data.
The structural parameters of the disk of the Large Magellanic Cloud (LMC) are estimated.We used the red clump stars from the VI photometric data of the Optical Gravitational Lensing Experiment survey and from the Magellanic Cloud Photometric Survey f
The structural parameters, like the inclination, i and the position angle of the line of nodes (PA_lon) of the disk of the Large Magellanic Cloud (LMC) are estimated using the JH photometric data of red clump stars from the Infrared Survey Facility -
High-precision (sigma < 0.01) new JHK observations of 226 of the brightest and nearest red clump stars in the solar neighbourhood are used to determine distance moduli for the LMC. The resulting K- and H-band values of 18.47pm0.02 and 18.49pm0.06 imp
We present the most extensive and detailed reddening maps of the Magellanic Clouds (MCs) derived from the color properties of Red Clump (RC) stars. The analysis is based on the deep photometric maps from the fourth phase of the Optical Gravitational
We present Washington C, T1 CCD photometry of 21 fields located in the northern part of the Large Magellanic Cloud (LMC), and spread over a region of more than 2.52 degrees approximately 6 degrees from the bar. The surveyed areas were chosen on the b