ﻻ يوجد ملخص باللغة العربية
We discuss the results of high-resolution (~0.1-0.2 pc) BIMA CO observations of the central regions of 3 molecular clouds in the far-outer Galaxy (FOG). We identify clumps and investigate their stability by using the virial theorem, including terms due to gravity, turbulence, magnetic field, and interclump gas pressure, and make a comparison with clumps in local clouds (RMC and Orion B South). While a reasonable combination of these forces can render most clumps stable, an interesting difference between FOG and local clumps emerges when comparing only gravity and turbulence. In the FOG these forces are in equilibrium (virial parameter alpha ~ 1) for clumps down to the lowest masses found (a few Msol), but for local clumps alpha ~ 1 only for clumps with masses larger than a few tens of Msol. Thus it appears that in the FOG gravity is the dominant force down to a much lower mass than in local clouds, implying that gravitational collapse and star formation may occur more readily even in the smallest clumps. This might explain the apparently steeper IMF found in the outer Galaxy.
The disk mass is among the most important input parameter for every planet formation model to determine the number and masses of the planets that can form. We present an ALMA 887micron survey of the disk population around objects from 2 to 0.03Msun i
We investigate the distribution of different classes of spectroscopically identified sources and theoretical models in the color-color diagrams (CCDs) combining the near-infrared (NIR) and mid-infrared (MIR) data to develop a method to classify Outer
The Galaxys stellar populations are naturally classified into six `types, of which five have been observed. These are the thin disk (Pop I in the historical scheme), a discrete thick disk (Pop I.5), the metal-rich bulge, which was not named in the Ba
The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star forming region carried out using the VLT/X-Sh
We use deep Hubble Space Telescope imaging in the outskirts of the nearby spiral M101 to study stellar populations in the galaxys outer disk and halo. Our ACS field lies 17.6 arcmin (36 kpc) from the center of M101 and targets the blue NE Plume of M1