ترغب بنشر مسار تعليمي؟ اضغط هنا

Building the bridge between Damped Ly-alpha Absorbers and Lyman Break galaxies

123   0   0.0 ( 0 )
 نشر من قبل Johan P. U. Fynbo
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. P. U. Fynbo




اسأل ChatGPT حول البحث

In 2000, we started the program ``Building the Bridge between Damped Ly-alpha Absorbers and Lyman-Break Galaxies: Ly-alpha Selection of Galaxies at the European Southern Observatorys Very Large Telescope. This project is an attempt to use Ly-alpha selection of high-z galaxies to bridge the gap between absorption- and emission-selected galaxies by creating a large database of z=3 galaxies belonging to the abundant population of faint (R>25.5) galaxies probed by the Damped Ly-alpha Absorbers (DLAs). Here we present the first results of our program, namely the results from a deep Ly-alpha study of the field of the z=2.85 DLA towards Q2138-4427.



قيم البحث

اقرأ أيضاً

85 - J.U. Fynbo , P. Moller , 1998
The number of damped Ly-alpha absorbers (DLAs) currently known is about 100, but our knowledge of their sizes and morphologies is still very sparse as very few have been detected in emission. Here we present narrow-band and broad-band observations of a DLA in the field of the quasar pair Q0151+048A (qA) and Q0151+048B (qB). These two quasars have very similar redshifts z_em = 1.922, 1.937, respectively, and an angular separation of 3.27 arcsec. The spectrum of qA contains a DLA at z_abs = 1.9342 (close to the emission redshift) which shows an emission line in the trough, detected at 4 sigma. Our narrow-band image confirms this detection and we find Ly-alpha emission from an extended area covering 6x3 arcsec^2, corresponding to 25x12h^-2 kpc^2 (q0=0.5, H0 = 100h km s^-1). The total Ly-alpha luminosity from the DLA is 1.2 x 10^43 h^-2 erg s^-1, which is a factor of several higher than the Ly-alpha luminosity found from other DLAs. The narrow-band image also indicates that qB is not covered by the DLA. This fact, together with the large equivalent width of the emission line from the Ly-alpha cloud, the large luminosity, and the 300 km s^-1 blueshift relative to the DLA, can plausibly be explained if qB is the sourceof a Lyman-limit system. We also consider the relation between DLAs and Lyman-break galaxies (LBGs). If DLAs are gaseous disks surrounding LBGs, and if the apparent brightnesses and impact parameters of the few identified DLAs are representative of the brighter members of the population, then the luminosity distribution of DLAs is nearly flat, and we would expect that some 70% of the galaxy counterparts to DLAs at z=3 are fainter than m_R=28.
115 - Tae Song Lee 2010
We calculate the cross-correlation function (CCF) between damped Ly-a systems (DLAs) and Lyman break galaxies (LBGs) using cosmological hydrodynamic simulations at z=3. We compute the CCF with two different methods. First, we assume that there is one DLA in each dark matter halo if its DLA cross section is non-zero. In our second approach we weight the pair-count by the DLA cross section of each halo, yielding a cross-section-weighted CCF. We also compute the angular CCF for direct comparison with observations. Finally, we calculate the auto-correlation functions of LBGs and DLAs, and their bias against the dark matter distribution. For these different approaches, we consistently find that there is good agreement between our simulations and observational measurements by Cooke et al. and Adelberger et al. Our results thus confirm that the spatial distribution of LBGs and DLAs can be well described within the framework of the concordance Lambda CDM model. We find that the correlation strengths of LBGs and DLAs are consistent with the actual observations, and in the case of LBGs it is higher than would be predicted by low-mass galaxy merger models.
189 - Tayyaba Zafar 2014
Nitrogen is thought to have both primary and secondary origins depending on whether the seed carbon and oxygen are produced by the star itself (primary) or already present in the interstellar medium (secondary) from which star forms. DLA and sub-DLA systems with typical metallicities of -3.0<Z/Z_sun<-0.5 are excellent tools to study nitrogen production. We made a search for nitrogen in the ESO-UVES advanced data products (EUADP) database. In the EUADP database, we find 10 new measurements and 9 upper limits of nitrogen. We further compiled DLA/sub-DLA data from the literature with estimates available of nitrogen and alpha-elements. This yields a total of 98 systems, i.e. the largest nitrogen abundance sample investigated so far. In agreement with previous studies, we indeed find a bimodal [N/alpha] behaviour: three-quarter systems show a mean value of [N/alpha]=-0.87 with a scatter of 0.21 dex and one-quarter shows ratios clustered at [N/alpha]=-1.43 with a lower dispersion of 0.13 dex. The high [N/alpha] group is consistent with the blue compact dwarves and dwarf irregular galaxies, suggesting primary nitrogen production. The low [N/alpha] group is the lowest ever observed in any astrophysical site and probably provides an evidence of the primary production by fast rotating massive stars in young sites. Moreover, we find a transition between the two [N/alpha] groups around [N/H]=-2.5. The transition is not abrupt and there are a few systems lying in the transition region. Additional observations of DLAs/sub-DLAs below [N/H]<-2.5 would provide more clues.
We have obtained high signal:to:noise optical spectroscopy at 5AA resolution of 27 quasars from the APM z$>$4 quasar survey. The spectra have been analyzed to create new samples of high redshift Lyman-limit and damped Lyman-$alpha$ absorbers. These d ata have been combined with published data sets in a study of the redshift evolution and the column density distribution function for absorbers with $log$N(HI)$ge17.5$, over the redshift range 0.01 $<$ z $<$ 5. The main results are: begin{itemize} item Lyman limit systems: The data are well fit by a power law $N(z) = N_0(1 + z)^{gamma}$ for the number density per unit redshift. For the first time intrinsic evolution is detected in the product of the absorption cross-section and comoving spatial number density for an $Omega = 1$ Universe. We find $gamma = 1.55$ ($gamma = 0.5$ for no evolution) and $N_0 = 0.27$ with $>$99.7% confidence limits for $gamma$ of 0.82 & 2.37. item Damped lya systems: The APM QSOs provide a substantial increase in the redshift path available for damped surveys for $z>3$. Eleven candidate and three confirmed damped Ly$alpha$ absorption systems, have been identified in the APM QSO spectra covering the redshift range $2.8le z le 4.4$ (11 with $z>3.5$). Combining the APM survey confirmed and candidate damped lya absorbers with previous surveys, we find evidence for a turnover at z$sim$3 or a flattening at z$sim$2 in the cosmological mass density of neutral gas, $Omega_g$. end{itemize} The Lyman limit survey results are published in Storrie-Lombardi, et~al., 1994, ApJ, 427, L13. Here we describe the results for the DLA population of absorbers.
We consider the questions of whether the damped Lyman-alpha (DLA) and sub-DLA absorbers in quasar spectra differ intrinsically in metallicity, and whether they could arise in galaxies of different masses. Using the recent measurements of the robust m etallicity indicators Zn and S in DLAs and sub-DLAs, we confirm that sub-DLAs have higher mean metallicities than DLAs, especially at $z lesssim 2$. We find that the intercept of the metallicity-redshift relation derived from Zn and S is higher than that derived from Fe by 0.5-0.6 dex. We also show that, while there is a correlation between the metallicity and the rest equivalent width of Mg II $lambda 2796$ or Fe II $lambda 2599$ for DLAs, no correlation is seen for sub-DLAs. Given this, and the similar Mg II or Fe II selection criteria employed in the discovery of both types of systems at lower redshifts, the difference between metallicities of DLAs and sub-DLAs appears to be real and not an artefact of selection. This conclusion is supported by our simulations of Mg II $lambda 2796$ and Fe II $lambda 2599$ lines for a wide range of physical conditions. On examining the velocity spreads of the absorbers, we find that sub-DLAs show somewhat higher mean and median velocity spreads ($Delta v$), and an excess of systems with $Delta v > 150$ km s$^{-1}$, than DLAs. Compared to DLAs, the [Mn/Fe] vs. [Zn/H] trend for sub-DLAs appears to be steeper and closer to the trend for Galactic bulge and thick disk stars, possibly suggesting different stellar populations. The absorber data appear to be consistent with galaxy down-sizing. The data are also consistent with the relative number densities of low-mass and high-mass galaxies. It is thus plausible that sub-DLAs arise in more massive galaxies on average than DLAs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا