ﻻ يوجد ملخص باللغة العربية
The present work is designed to explore the effects of the time-dependent element diffusion on the mode trapping properties of DA white dwarf models with various thickness of the hydrogen envelope. Our predictions are compared with the standard assumption of diffusive equilibrium in the trace element approximation. We find that element diffusion markedly weakens the presence of mode trapping originated in the outer layers of the models, even for the case of thin hydrogen envelopes.
At present, a large number of pulsating white dwarf (WD) stars is being discovered either from Earth-based surveys such as the Sloan Digital Sky Survey, or through observations from space (e.g., the Kepler mission). The asteroseismological techniques
The standard theory of pulsations deals with the frequencies and growth rates of infinitesimal perturbations in a stellar model. Modes which are calculated to be linearly driven should increase their amplitudes exponentially with time; the fact that
The unprecedented extent of coverage provided by Kepler observations recently revealed outbursts in two hydrogen-atmosphere pulsating white dwarfs (DAVs) that cause hours-long increases in the overall mean flux of up to 14%. We have identified two ne
We report the discovery of two new accreting pulsating white dwarf stars amongst the cataclysmic variables of the Sloan Digital Sky Survey: SDSSJ074531.91+453829.5 and SDSSJ091945.10+085710.0. We observe high amplitude non-sinusoidal variations of 4.
The determination of atmospheric parameters of white dwarf stars (WDs) is crucial for researches on them. Traditional methodology is to fit the model spectra to observed absorption lines and report the parameters with the lowest $chi ^2$ error, which