ﻻ يوجد ملخص باللغة العربية
We report the discovery of variable circularly polarised radio emission associated with relativistic ejections from GRS 1915+105, based on observations with the Australia Telescope Compact Array (ATCA) and the Multi-Element Radio-Linked Interferometer Network (MERLIN). Following a radio flare in 2001 January, significant and variable circular polarisation, at a fractional level of 0.2-0.4%, was measured with ATCA at four frequencies between 1-9 GHz. Following an additional outburst 65 days later in 2001 March, further ATCA observations measured a comparable sign and level of circular polarisation at two frequencies. At this second epoch, contemporaneous MERLIN observations directly imaged a relativistic ejection event and allowed us to confidently associate both the circularly and linearly polarised emission with the relativistic ejecta, allowing a detailed measurement of the full polarisation properties in the optically thin phase. The fractional circular polarisation spectrum appears to flatten at higher frequencies in 2001 January, when there is strong evidence for multiple components at different optical depths. While we cannot conclusively distinguish between synchrotron or propagation-induced conversion as the origin of the circularly polarised component, we do not consider that coherent or birefringent scintillation mechanisms are likely. The implication is therefore that the ejections from GRS 1915+105 are associated with a significant population of low-energy electrons, with associated consequences for the energetics of relativistic ejection events. [abridged]
Most models of the low frequency quasi periodic oscillations (QPOs) in low-mass X-ray binaries (LMXBs) explain the dynamical properties of those QPOs. On the other hand, in recent years reverberation models that assume a lamp-post geometry have been
GRS 1915+105 harbors one of the most massive known stellar black holes in the Galaxy. In May 2007, we observed GRS 1915+105 for 117 ksec in the low/hard state using Suzaku. We collected and analyzed the data with the HXD/PIN and XIS cameras spanning
From the analysis of more than 92 ks of data obtained with the laxpc instrument on board Astrosat we have detected a clear high-frequency QPO whose frequency varies between 67.4 and 72.3 Hz. In the classification of variability classes of GRS 1915+10
We present the first detections of the black hole X-ray binary GRS 1915+105 at sub-millimetre wavelengths. We clearly detect the source at 350 GHz on two epochs, with significant variability over the 24 hr between epochs. Quasi-simultaneous radio mon
We report the results of a systematic timing analysis of all archival Rossi X-Ray Timing Explorer (RXTE) observations of the bright black-hole binary GRS 1915+105 in order to detect high-frequency quasi-periodic oscillations (HFQPO). We produced powe