ترغب بنشر مسار تعليمي؟ اضغط هنا

Nearby quasar remnants and ultra-high energy cosmic rays

72   0   0.0 ( 0 )
 نشر من قبل Diego F. Torres
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As recently suggested, nearby quasar remnants are plausible sites of black-hole based compact dynamos that could be capable of accelerating ultra-high energy cosmic rays (UHECRs). In such a model, UHECRs would originate at the nuclei of nearby dead quasars, those in which the putative underlying supermassive black holes are suitably spun-up. Based on galactic optical luminosity, morphological type, and redshift, we have compiled a small sample of nearby objects selected to be highly luminous, bulge-dominated galaxies, likely quasar remnants. The sky coordinates of these galaxies were then correlated with the arrival directions of cosmic rays detected at energies $> 40$ EeV. An apparently significant correlation appears in our data. This correlation appears at closer angular scales than those expected when taking into account the deflection caused by typically assumed IGM or galactic magnetic fields over a charged particle trajectory. Possible scenarios producing this effect are discussed, as is the astrophysics of the quasar remnant candidates. We suggest that quasar remnants be also taken into account in the forthcoming detailed search for correlations using data from the Auger Observatory.

قيم البحث

اقرأ أيضاً

We explore acceleration of ions in the Quark Nova (QN) scenario, where a neutron star experiences an explosive phase transition into a quark star (born in the propeller regime). In this picture, two cosmic ray components are isolated: one related to the randomized pulsar wind and the other to the propelled wind, both boosted by the ultra-relativistic Quark Nova shock. The latter component acquires energies $10^{15} {rm eV}<E<10^{18} {rm eV}$ while the former, boosted pulsar wind, achieves ultra-high energies $E> 10^{18.6}$ eV. The composition is dominated by ions present in the pulsar wind in the energy range above $10^{18.6}$ eV, while at energies below $10^{18}$ eV the propelled ejecta, consisting of the fall-back neutron star crust material from the explosion, is the dominant one. Added to these two components, the propeller injects relativistic particles with Lorentz factors $Gamma_{rm prop.} sim 1-1000$, later to be accelerated by galactic supernova shocks. The QN model appears to be able to account for the extragalactic cosmic rays above the ankle and to contribute a few percent of the galactic cosmic rays below the ankle. We predict few hundred ultra-high energy cosmic ray events above $10^{19}$ eV for the Pierre Auger detector per distant QN, while some thousands are predicted for the proposed EUSO and OWL detectors.
155 - M.T. Dova 2016
The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 1017eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written versi on of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present an introduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.
The sources of ultra-high energy cosmic rays (UHECRs) are still one of the main open questions in high-energy astrophysics. If UHECRs are accelerated in astrophysical sources, they are expected to produce high-energy photons and neutrinos due to the interaction with the surrounding astrophysical medium or ambient radiation. In particular, neutrinos are powerful probes for the investigation of the region of production and acceleration of UHECRs since they are not sensitive to magnetic deflections nor to interactions with the interstellar medium. The results of three different analyses that correlate the very high-energy neutrino candidates detected by IceCube and ANTARES and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array will be discussed. The first two analyses use a sample of high-energy neutrinos from IceCube and ANTARES selected to have a significant probability to be of astrophysical origin. The first analysis cross-correlates the arrival directions of these selected neutrino events and UHECRs. The second one is a stacked likelihood analysis assuming as stacked sources the high-energy neutrino directions and looking for excesses in the UHECR data set around the directions of the neutrino candidates. The third analysis instead uses a larger sample of neutrinos selected to look for neutrino point-like sources. It consists of a likelihood method that looks for excesses in the neutrino point-source data set around the directions of the highest-energy UHECRs.
163 - Guenter Sigl 2012
This is a summary of a series of lectures on the current experimental and theoretical status of our understanding of origin and nature of cosmic radiation. Specific focus is put on ultra-high energy cosmic radiation above ~10^17 eV, including seconda ry neutral particles and in particular neutrinos. The most important open questions are related to the mass composition and sky distributions of these particles as well as on the location and nature of their sources. High energy neutrinos at GeV energies and above from extra-terrestrial sources have not yet been detected and experimental upper limits start to put strong contraints on the sources and the acceleration mechanism of very high energy cosmic rays.
98 - Todor Stanev 2007
We discuss the basic difficulties in understanding the origin of the highest energy particles in the Universe - the ultrahigh energy cosmic rays (UHECR). It is difficult to imagine the sources they are accelerated in. Because of the strong attenuatio n of UHECR on their propagation from the sources to us these sources should be at cosmologically short distance from us but are currently not identified. We also give information of the most recent experimental results including the ones reported at this conference and compare them to models of the UHECR origin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا