ترغب بنشر مسار تعليمي؟ اضغط هنا

Variable Thermal Emission from Aql X-1 in Quiescence

96   0   0.0 ( 0 )
 نشر من قبل R. E. Rutledge
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtained four Chandra/ACIS-S observations beginning two weeks after the end of the November 2000 outburst of the neutron star (NS) transient Aql X-1. Over the five month span in quiescence, the X-ray spectra are consistent with thermal emission from a NS with a pure hydrogen photosphere and R_{infty}=15.9+{0.8}-{2.9} (d/5 kpc) km at the optically implied X-ray column density. We also detect a hard power-law tail during two of the four observations. The intensity of Aql X-1 first decreased by 50+/-4% over three months, then increased by 35+/-5% in one month, and then remained constant (<6% change) over the last month. These variations in the first two observations cannot be explained by a change in the power-law spectral component, nor in the X-ray column density. Presuming that R_{infty} is not variable and a pure hydrogen atmosphere, the long-term changes can only be explained by variations in the NS effective temperature, from kT_{eff, infty}=130+3-5 eV, down to 113+3-4 eV, finally increasing to 118+9-4 eV for the final two observations. During one of these observations, we observe two phenomena which were previously suggested as indicators of quiescent accretion onto the NS: short-timescale (<1e4 sec) variability (at 32+8-6% rms), and a possible absorption feature near 0.5 keV. The possible absorption feature can potentially be explained as due to a time-variable response in the ACIS detector. Even so, such a feature has not been detected previously from a NS, and if confirmed and identified, can be exploited for simultaneous measurements of the photospheric redshift and NS radius.

قيم البحث

اقرأ أيضاً

The importance of shocks in nova explosions has been highlighted by Fermis discovery of gamma-ray producing novae. Over three years of multi-band VLA radio observations of the 2010 nova V1723 Aql show that shocks between fast and slow flows within th e ejecta led to the acceleration of particles and the production of synchrotron radiation. Soon after the start of the eruption, shocks in the ejecta produced an unexpected radio flare, resulting in a multi-peaked radio light curve. The emission eventually became consistent with an expanding thermal remnant with mass $2 times 10^{-4} M_odot$ and temperature $10^4$ K. However, during the first two months, the $gtrsim 10^6$ K brightness temperature at low frequencies was too high to be due to thermal emission from the small amount of X-ray producing shock-heated gas. Radio imaging showed structures with velocities of 400 km s$^{-1}$ (d/6 kpc) in the plane of the sky, perpendicular to a more elongated 1500 km s$^{-1}$ (d/6 kpc) flow. The morpho-kinematic structure of the ejecta from V1723 Aql appears similar to nova V959 Mon, where collisions between a slow torus and a faster flow collimated the fast flow and gave rise to gamma -ray producing shocks. Optical spectroscopy and X-ray observations of V1723 Aql during the radio flare are consistent with this picture. Our observations support the idea that shocks in novae occur when a fast flow collides with a slow collimating torus. Such shocks could be responsible for hard X-ray emission, gamma -ray production, and double-peaked radio light curves from some classical novae.
A number of studies have revealed variability from neutron star low-mass X-ray binaries during quiescence. Such variability is not well characterised, or understood, but may be a common property that has been missed due to lack of multiple observatio ns. One such source where variability has been observed is Aql X-1. Here, we analyse 14 Chandra and XMM-Newton observations of Aql X-1 in quiescence, covering a period of approximately 2 years. There is clear variability between the epochs, with the most striking feature being a flare-like increase in the flux by a factor of 5. Spectral fitting is inconclusive as to whether the power-law and/or thermal component is variable. We suggest that the variability and flare-like behaviour during quiescence is due to accretion at low rates which might reach the neutron star surface.
We present Suzaku X-ray observations of the recurrent nova T CrB in quiescence. T CrB is the first recurrent nova to be detected in the hard-X-ray band (E ~ 40.0 keV) during quiescence. The X-ray spectrum is consistent with cooling-flow emission eman ating from an optically thin region in the boundary layer of an accretion disk around the white dwarf. The detection of strong stochastic flux variations in the light curve supports the interpretation of the hard X-ray emission as emanating from a boundary layer.
Transiently accreting neutron stars in quiescence (Lx<10^34 erg/s) have been observed to vary in intensity by factors of few, over timescales of days to years. If the quiescent luminosity is powered by a hot NS core, the core cooling timescale is muc h longer than the recurrence time, and cannot explain the observed, more rapid variability. However, the non-equilibrium reactions which occur in the crust during outbursts deposit energy in iso-density shells, from which the thermal diffusion timescale to the photosphere is days to years. The predicted magnitude of variability is too low to explain the observed variability unless - as is widely believed - the neutrons beyond the neutron-drip density are superfluid. Even then, variability due to this mechanism in models with standard core neutrino cooling processes is less than 50 per cent - still too low to explain the reported variability. However, models with rapid core neutrino cooling can produce variability by a factor as great as 20, on timescales of days to years following an outburst. Thus, the factors of few intensity variability observed from transiently accreting neutron stars can be accounted for by this mechanism only if rapid core cooling processes are active.
We analyse new optical spectroscopic, direct-image and X-ray observations of the recently discovered a high proper motion cataclysmic variable V1838 Aql. The data were obtained during its 2013 superoutburst and its subsequent quiescent state. An exte nded emission around the source was observed up to 30 days after the peak of the superoutburst, interpreted it as a bow--shock formed by a quasi-continuous outflow from the source in quiescence. The head of the bow--shock is coincident with the high--proper motion vector of the source ($v_{perp}=123pm5$ km s$^{-1}$) at a distance of $d=202pm7$ pc. The object was detected as a weak X-ray source ($0.015pm0.002$ counts s$^{-1}$) in the plateau of the superoutburst, and its flux lowered by two times in quiescence (0.007$pm$0.002 counts s$^{-1}$). Spectroscopic observations in quiescence we confirmed the orbital period value $P_{rm{orb}}=0.0545pm 0.0026$ days, consistent with early-superhump estimates, and the following orbital parameters: $gamma= -21pm3$ km s$^{-1}$ and $K_1 = 53pm3$ km s$^{-1}$. The white dwarf is revealed as the system approaches quiescence, which enables us to infer the effective temperature of the primary $T_{eff}=11,600pm400$K. The donor temperature is estimated $lesssim 2200$K and suggestive of a system approaching the period minimum. Doppler maps in quiescence show the presence of the hot spot in HeI line at the expected accretion disc-stream shock position and an unusual structure of the accretion disc in H$alpha$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا