ﻻ يوجد ملخص باللغة العربية
The Pachmarhi Array of Cerenkov Telescopes consists of a distributed array of 25 telescopes that are used to sample the atmospheric Cerenkov Photon showers. Each telescope consists of 7 parabolic mirrors each viewed by a single photo-multiplier tube. Reconstruction of photon showers are carried out using fast timing information on the arrival of pulses at each PMT. The shower front is fitted to a plane and the direction of arrival of primary particle initiating the shower is obtained. The error in the determination of the arrival direction of the primary has been estimated using the {it split} array method. It is found to be $sim 2.4^prime ~$ for primaries of energy $ > 3 ~TeV$. The dependence of the angular resolution on the separation between the telescopes and the number of detectors are also obtained from the data.
Pachmarhi Array of v Cerenkov Telescopes (PACT) consists of a 5$times$5 array of v Cerenkov telescopes deployed over an area of 100 $m$ $times$ 80 $m$, in the form of a rectangular matrix. The experiment is based on atmospheric v Cerenkov technique u
Pachmarhi Array of v{C}erenkov Telescopes (PACT), based on wavefront sampling technique, has been used for detecting TeV gamma rays from galactic and extra-galactic $gamma $-ray sources. The Blazar, Mkn 421 was one such extra-galactic source observed
Atmospheric Cerenkov telescopes are used to detect electromagnetic showers from primary gamma rays of energy > 300 GeV and to discriminate these from cascades due to hadrons using the shape and orientation of the Cerenkov images. The geomagnetic fiel
Three different analysis techniques for Atmospheric Imaging System are presented. The classical Hillas parameters based technique is shown to be robust and efficient, but more elaborate techniques can improve the sensitivity of the analysis. A compar
The hunt for cosmic TeV particle accelerators is prospering through Imaging Atmospheric Cerenkov Telescopes. We face challenges such as low light levels and MHz trigger rates, and the need to distinguish between particle air showers stemming from pri