ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray emitting young stars in the Orion Nebula

427   0   0.0 ( 0 )
 نشر من قبل Eric Feigelson
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Orion Nebula Cluster and the molecular cloud in its vicinity have been observed with the ACIS-I detector on board the Chandra X-ray Observatory with 23 hours exposure. We detect 1075 X-ray sources: 91% are spatially associated with known stellar members of the cluster, and 7% are newly identified deeply embedded cloud members. This provides the largest X-ray study of a pre-main sequence stellar population. We examine here the X-ray properties of Orion young stars as a function of mass. Results include: (a) the discovery of rapid variability in the O9.5 31 M_o star theta^2A Ori, and several early B stars, inconsistent with the standard model of X-ray production in small wind shocks; (b) support for the hypothesis that intermediate-mass mid-B through A type stars do not themselves produce significant X-ray emission; (c) confirmation that low-mass G- through M-type T Tauri stars exhibit powerful flaring but typically at luminosities considerably below the `saturation level; (d) confirmation that the presence or absence of a circumstellar disk has no discernable effect on X-ray emission; (e) evidence that T Tauri plasma temperatures are often very high with T >= 100 MK, even when luminosities are modest and flaring is not evident; and (f) detection of the largest sample of pre-main sequence very low mass objects showing high flaring levels and a decline in magnetic activity as they evolve into L- and T-type brown dwarfs.



قيم البحث

اقرأ أيضاً

We use the sensitive X-ray data from the Chandra Orion Ultradeep Project (COUP) to study the X-ray properties of 34 spectroscopically-identified brown dwarfs with near-infrared spectral types between M6 and M9 in the core of the Orion Nebula Cluster. Nine of the 34 objects are clearly detected as X-ray sources. The apparently low detection rate is in many cases related to the substantial extinction of these brown dwarfs; considering only the BDs with $A_V leq 5$ mag, nearly half of the objects (7 out of 16) are detected in X-rays. Our 10-day long X-ray lightcurves of these objects exhibit strong variability, including numerous flares. While one of the objects was only detected during a short flare, a statistical analysis of the lightcurves provides evidence for continuous (`quiescent) emission in addition to flares for all other objects. Of these, the $sim$ M9 brown dwarf COUP 1255 = HC 212 is one of the coolest known objects with a clear detection of quiescent X-ray emission. The X-ray properties (spectra, fractional X-ray luminosities, flare rates) of these young brown dwarfs are similar to those of the low-mass stars in the ONC, and thus there is no evidence for changes in the magnetic activity around the stellar/substellar boundary, which lies at $sim$ M6 for ONC sources. Since the X-ray properties of the young brown dwarfs are also similar to those of M6--M9 field stars, the key to the magnetic activity in very cool objects seems to be the effective temperature, which determines the degree of ionization in the atmosphere.
(Abridged) Context: Both X-ray and radio observations offer insight into the high-energy processes of young stellar objects (YSOs). The observed thermal X-ray emission can be accompanied by both thermal and nonthermal radio emission. Due to variabili ty, simultaneous X-ray and radio observations are a priori required, but results have been inconclusive. Aims: We use archival X-ray and radio observations of the Orion Nebula Cluster (ONC) to significantly enlarge the sample size of known YSOs with both X-ray and radio detections. Methods: We study the ONC using multi-epoch non-simultaneous archival Chandra X-ray and NRAO Very Large Array (VLA) single-band radio data. The multiple epochs allow us to reduce the impact of variability by obtaining approximated quiescent fluxes. Results: We find that only a small fraction of the X-ray sources (7%) have radio counterparts, even if 60% of the radio sources have X-ray counterparts. The radio flux density is typically too low to distinguish thermal and nonthermal radio sources. Only a small fraction of the YSOs with detections in both bands are compatible with the empirical Guedel-Benz (GB) relation. Most of the sources not compatible with the GB relation are proplyds, and thus likely thermal sources, but only a fraction of the proplyds is detected in both bands, such that the role of these sources is inconclusive. Conclusions: While the radio sources appear to be globally unrelated to the X-ray sources, the X-ray dataset clearly is much more sensitive than the radio data. We find tentative evidence that known non-thermal radio sources and saturated X-ray sources are indeed close to the empirical relation, even if skewed to higher radio luminosities, as they are expected to be. Most of the sources that are clearly incompatible with the empirical relation are proplyds which could instead plausibly be thermal radio sources.
187 - L. Prisinzano 2007
The origin and evolution of the X-rays in very young stellar objects (YSOs) are not yet well understood since it is very hard to observe YSOs in the protostellar phase. We study the X-ray properties of Class 0-I objects in the Orion Nebula Cluster (O NC) and compare them with those of the more evolved Class II and III members. Using Chandra Orion Ultradeep Project (COUP) data, we study the X-ray properties of stars in different evolutionary classes: luminosities, NH, temperatures and time variability are compared in order to understand if the interaction between the circumstellar material and the central object can influence the X-ray emission. We have assembled the deepest and most complete photometric catalog of objects in the ONC region from the UV to 8 microns using data from HST, [email protected] ESO and ISPI@4m CTIO telescopes, and Spitzer IRAC. We select high probability candidate Class 0-I protostars, distinguishing between those having a spectral energy distribution which rises from K up to 8 microns (Class 0-Ia) from those where the SED rises from K up to 4.5 microns and decreasing afterwards (Class 0-Ib). We select a sample of bona fide Class II stars and a set of Class III stars with IR emission consistent with normal photospheres. Our principal result is that Class 0-Ia objects are significantly less luminous in X-rays, both in the total and hard bands, than the more evolved Class II stars with mass larger than 0.5 Msun; these latter show X-ray luminosities similar to those of Class 0-Ib stars. This result supports the hypothesis that the onset of X-ray emission occurs at a very early stage of star formation. Temporal variability and spectral properties of Class 0-I stars are similar to those of the more evolved Class II and III objects, except for a larger absorption likely due to gas in the circumstellar material.
We report on a high-spatial-resolution survey for binary stars in the periphery of the Orion Nebula Cluster, at 5 - 15 arcmin (0.65 - 2 pc) from the cluster center. We observed 228 stars with adaptive optics systems, in order to find companions at se parations of 0.13 - 1.12 (60 - 500 AU), and detected 13 new binaries. Combined with the results of Petr (1998), we have a sample of 275 objects, about half of which have masses from the literature and high probabilities to be cluster members. We used an improved method to derive the completeness limits of the observations, which takes into account the elongated point spread function of stars at relatively large distances from the adaptive optics guide star. The multiplicity of stars with masses >2 M_sun is found to be significantly larger than that of low-mass stars. The companion star frequency of low-mass stars is comparable to that of main-sequence M-dwarfs, less than half that of solar-type main-sequence stars, and 3.5 to 5 times lower than in the Taurus-Auriga and Scorpius-Centaurus star-forming regions. We find the binary frequency of low-mass stars in the periphery of the cluster to be the same or only slightly higher than for stars in the cluster core (<3 arcmin from theta1C Ori). This is in contrast to the prediction of the theory that the low binary frequency in the cluster is caused by the disruption of binaries due to dynamical interactions. There are two ways out of this dilemma: Either the initial binary frequency in the Orion Nebula Cluster was lower than in Taurus-Auriga, or the Orion Nebula Cluster was originally much denser and dynamically more active.
74 - K. R. Briggs 2004
We present a survey of X-ray emission from young stars in the Sword of Orion star-formation region using XMM-Newtons EPIC detectors. We find over 850 X-ray sources, of which more than 700 have near-infrared counterparts consistent with being young st ars. The survey enables statistical investigation of the dependence of X-ray emission properties of young stars on fundamental stellar parameters (mass, rotation, age) and environmental features (circumstellar disk, active accretion, circumstellar absorption), and study of structure size in individual coronae through analysis of large flares.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا