ترغب بنشر مسار تعليمي؟ اضغط هنا

Hubble Space Telescope Imaging of the Post-Starburst Quasar UN 1025-0040: Evidence for Recent Star Formation

62   0   0.0 ( 0 )
 نشر من قبل M. S. Brotherton
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new Hubble Space Telescope (HST) WFPC2 images of the post-starburst quasar UN J1025-0040, which contains both an active galactic nucleus (AGN) and a 400-Myr-old nuclear starburst of similar bolometric luminosity (10^{11.6} solar luminosities). The F450W and F814W images resolve the AGN from the starburst and show that the bulk of the star light (6 x 10^{10} solar masses) is contained within a central radius of about 600 parsecs, and lacks clear morphological structures at this scale. Equating the point-source light in each image with the AGN contribution, we determined the ratio of AGN-to-starburst light. This ratio is 69% in the red F814W image, consistent with our previous spectral analysis, but about 50% in the blue F450W image whereas we had predicted 76%. The HST images are consistent with previous photometry, ruling out variability (a fading AGN) as a cause for this result. We can explain the new data if there is a previously unknown young stellar population present, 40 Myr or younger, with as much as 10% of the mass of the dominant 400-Myr-old population. This younger starburst may represent the trigger for the current nuclear activity. The multiple starburst ages seen in UN J1025-0040 and its companion galaxy indicate a complex interaction and star-formation history.

قيم البحث

اقرأ أيضاً

UN J1025-0040 is a quasar at z = 0.6344 that shows an extremely bright post starburst population of age ~ 400 Myr (Brotherton et al. 1999). Images of UN J1025-0040 show a nearly stellar object 4.2 arcseconds SSW of the quasar. We present imaging and spectroscopy that confirm that this object is a companion galaxy at redshift z = 0.6341. We estimate an age of ~ 800 Myr for the dominant stellar population in the companion. The companion appears to be interacting with the quasar host galaxy, and this interaction may have triggered both the starburst and the quasar activity in UN J1025-0040.
We present images of 29 post-starburst quasars (PSQs) from a Hubble Space Telescope (emph{HST}) Advanced Camera for Surveys (ACS) Wide Field Channel Snapshot program. These broad-lined active galactic nuclei (AGN) possess the spectral signatures of m assive ($M_{burst} sim 10^{10} M_{odot}$), moderate-aged stellar populations (hundreds of Myrs). Thus, their composite nature provides insight into the AGN-starburst connection. We measure quasar-to-host galaxy light contributions via semi-automated two-dimensional light profile fits of PSF-subtracted images. We examine the host morphologies, as well as, model the separate bulge and disk components. The emph{HST}/ACS-F606W images reveal an equal number of spiral (13/29) and early-type (13/29) hosts, with the remaining three hosts having indeterminate classifications. AGNs hosted by early-type galaxies have on average greater luminosity than those hosted by spiral galaxies. Disturbances, such as tidal tails, shells, star-forming knots, and asymmetries are seen as signposts of interaction/merger activity. Disturbances such as these were found in 17 of the 29 objects and are evenly distributed among early-type and spiral galaxies. Two of these systems are clearly merging with their companions. Compared to other AGN of similar luminosity and redshift these PSQs have a higher fraction of early-type hosts and disturbances. Our most luminous objects with disturbed early-type host galaxies appear to be consistent with merger products. Thus, these luminous disturbed galaxies may represent a phase in an evolutionary scenario for merger driven activity and of hierarchical galaxy evolution. Our less luminous objects appear to be consistent with Seyfert galaxies not requiring triggering by major mergers. Many of these Seyferts are barred spiral galaxies.
378 - John M. Cannon 2003
New HST/WFPC2 imaging of the dwarf starburst galaxy NGC 625 is presented. These data, 80% complete to V and I magnitudes of 26.0 and 25.3, respectively, allow us to study the recent star formation history of NGC 625. We derive a tip of the red giant branch (TRGB) distance modulus of 27.95+/-0.07, corresponding to a distance of 3.89+/-0.22 Mpc, and a location on the far side of the Sculptor Group. NGC 625 has a well-defined radial stellar population gradient, evidenced by a central concentration of young MS stars and an RGB/AGB ratio that increases with galactocentric distance. The prominent AGB is very red, and RGB stars are detected far from the central star forming regions. Using H Alpha and H Beta narrow band imaging and previous optical spectroscopy we identify substantial and varying internal extinction (A_V = 0.0 to 0.6 mag) associated with the central active star formation regions. To better understand the effects of internal extinction on the analysis of young stellar populations, synthetic models are presented which, for the first time, examine and account for this effect. Using the luminous blue helium burning stars, we construct a simple model of the recent (< 100 Myr) star formation in which an elevated but declining star formation rate has been present over this entire period. This is at odds with the presence of spectroscopic W-R features in the major star formation region which imply a short duration (<= 5 Myr) for the recent starburst. This suggests that starbursts displaying W-R features are not necessarily all of a short duration. Finally, we speculate on the possible causes of the present burst of star formation in this apparently isolated galaxy, and compare it to other nearby, well-studied dwarf starburst systems.
We present deep HST WFPC2 imaging of the Local Group dwarf irregular galaxy IC 1613. The photometry is the deepest to date for an isolated dwarf irregular galaxy. The resulting color-magnitude diagram (CMD) is analyzed using three different methods t o derive a star formation history (SFH). All three find an enhanced star formation rate (SFR), from 3 to 6 Gyr ago, and similar age-metallicity relationships (AMR). A comparison of the newly observed outer field with an earlier studied central field of IC 1613 shows that the SFR in the outer field has been significantly depressed during the last Gyr. This implies that the optical scale length of the galaxy has been decreasing with time and that comparison of galaxies at intermediate redshift with present day galaxies should take this effect into account. We find strong similarities between IC 1613 and the more distant Milky Way dSph companions in that all are dominated by star formation at intermediate ages. In particular, the SFH and AMR for IC 1613 and Leo I are indistinguishable. This implies that dIrr galaxies cannot be distinguished from dSphs by their intermediate age stellar populations. This type of a SFH may also be evidence for slower or suppressed early star formation in dwarf galaxies due to photoionization after the reionization of the universe by background radiation. Assuming that IC 1613 is typical of a dIrr evolving in isolation, since most of the star formation occurs at intermediate ages, these dwarf systems cannot be responsible for the fast chemical enrichment of the IGM which is seen at high redshift. There is no evidence for any large amplitude bursts of star formation in IC 1613, and we find it highly unlikely that analogs of IC 1613 have contributed to the excess of faint blue galaxies in existing galaxy redshift surveys.
In March 2006, the Hubble Heritage Team obtained a large four-filter (B, V, I, and H-alpha) six-point mosaic dataset of the prototypical starburst galaxy NGC 3034 (M82), with the Advanced Camera for Surveys (ACS) onboard the Hubble Space Telescope (H ST). The resulting color composite Heritage image was released in April 2006, to celebrate Hubbles 16th anniversary. Cycle 15 HST proposers were encouraged to submit General Observer and Archival Research proposals to complement or analyze this unique dataset. Since our M82 mosaics represent a significant investment of expert processing beyond the standard archival products, we will also release our drizzle combined FITS data as a High Level Science Product via the Multimission Archive at STScI (MAST) on December 31, 2006. This paper documents the key aspects of the observing program and image processing: calibration, image registration and combination (drizzling), and the rejection of cosmic rays and detector artifacts. Our processed FITS mosaics and related information can be downloaded from http://archive.stsci.edu/prepds/m82/
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا