ﻻ يوجد ملخص باللغة العربية
The recent discoveries of X-ray lines in the afterglows of gamma-ray bursts (GRBs) provide significant clues to the nature of GRB progenitors and central environments. However, the iron line interpretation by fluorescence or recombination mechanism requires a large amount of iron material. We argue that the very strong iron line could be attributed to an alternative mechanism: Cerenkov line emission since relativistic electrons and dense medium exist near GRB sites. Therefore, the broad iron lines are expected, and line intensity will be nearly independent of the iron abundance, the medium with the anomalously high Fe abundance is not required.
We propose that spontaneous particle--anti-particle pair creations from the discharged vacuum caused by the strong interactions in dense matter are major sources of $gamma$-ray bursts. Two neutron star collisions or black hole-neutron star mergers at
We extract 18 candidate short gamma-ray bursts (SGRBs) with precursors from 660 SGRBs observed by {em Fermi} and {em Swift} satellites, and carry out a comprehensive analysis on their temporal and spectral features. We obtain the following results: (
We report the discovery of a transient and fading hard X-ray emission in the BATSE lightcurves of a sample of short gamma-ray bursts. We have summed each of the four channel BATSE light curves of 76 short bursts to uncover the average overall tempora
The study of the early high-energy emission from both long and short Gamma-ray bursts has been revolutionized by the Swift mission. The rapid response of Swift shows that the non-thermal X-ray emission transitions smoothly from the prompt phase into
Observational evidence of iron absorption and emission lines in X-ray spectra of Gamma-Ray Bursts is quite compelling. I will briefly review the results, summarize different models and describe the connection with massive progenitors in star-forming